
COS 513: FOUNDATIONS OF PROBABILISTIC MODELING
LECTURE 3

DAVID SHUE, JOHN VALENTINO

1. REVIEW OF CONDITIONAL INDEPENDENCE

Recall the graphical model that we have used in previous lectures. In this
section we will determine whether or not two conditional independence re-
lationships hold in the graph by using the ”Bayes Ball” Algorithm.

FIGURE 1. The Graphical Model in Question

Question 1: Is X2 ⊥⊥ X3 | {X1 , X6}?
We can use the following process to test for conditional independence:

FIGURE 2. Testing X2 ⊥⊥ X3 | {X1, X6}

(1) Shade X1, X6

(2) Start the balls at X2 and X3

(3) Can a ball starting at X2 reach X3 through X1? No (“Shoe-Size”)
(4) Can a ball starting at X2 reach X5 through X6? Yes (“Aliens”)
(5) Can a ball starting at X6 reach X3 through X5? Yes (“Markov”)

Conclusion: Because the “ball” can “bounce” from X2 to X3, X2 is not
conditionally independent of X3 given X1 and X6

1

2 DAVID SHUE, JOHN VALENTINO

Question 2: Is X2 ⊥⊥X3 | {X1}?

FIGURE 3. Testing X2 ⊥⊥ X3 | {X1}

The same process as above is followed except that now X6 is “blocked,”
which leaves no paths through the graph and implies conditional indepen-
dence.

2. UNDIRECTED GRAPHICAL MODELS

The joint distribution of an undirected graphical model is defined in terms
of potential functions over cliques of the graph.

p(x) =
1

Z

∏
c∈C

Ψc(Xc)

Clique: A fully connected sub-node of the graph.
Potential Functions: Arbitrary, positive, and real-valued.
Z: The normalizing / scaling constant.

The above product doesn’t have to include every clique in the graph, but the
included cliques should cover the entire set of variables. Vertices can occur
multiple times, but no edge should be ignored!

In a DAG we are assured the values will sum to 1, which gives a valid joint
probability distribution. In the undirected case, we use Z as a scaling con-
stant to “fix” the potential by ensuring that p(x) will sum to 1.

(1) All conditional independencies can be found with graph separation.

(2) Some joints may be represented with Undirected Graphical models
but not with directed graphical models. (UDGM is a superset of
DGM.)

Advantages of UDGMS: Potentially more expressive than DGMS.
DGMS: Z is always one.

May represent an intuitive causal structure.

COS 513: FOUNDATIONS OF PROBABILISTIC MODELING LECTURE 3 3

3. PROBABILISTIC INFERENCE

The problem of computing conditional and marginal probabilities from a
joint distribution of random variables.

Goal:p(xf |xE) =
p(xf , xE)

p(xE)

Let f (query node) be a node index, e.g. {1,2,3,4,5,6}, E be a set of evi-
dence nodes and R be the remaining nodes /∈ E and 6= f

(1) Compute marginal

p(xf , xE) =
∑
xR

p(xf , xE, xR︸ ︷︷ ︸
all r.v’s in the model

)

(2) Compute another marginal

p(xE) =
∑
xf

p(xf , xE)

(3) Take the ratio

p(xf |xE) =

∑
xR

p(xf , xE, xR)

p(xE)

∑
xf

p(xf , xE)

The complexity problem: step 1 is potentially exponential in the number of
random variables: O(kR). IfR is large then the naive summation will be ex-
tremely expensive to compute. The goal of elimination is to take advantage
of local structure to reduce computational complexity.

3.1. Example inference: compute p(x1|x6)
Let R = {2, 3, 4, 5}, f = 1, and E = {6}

The book defines: x6 = a clamped value of x6, which conditions the ev-
idence nodes by the observed values. Using the δ function we can construct
an equivalent marginalization sum for conditioned variables which allows
for reordering of conditioned factors in the joint distribution.

g(x6) =
∑
x6

g(x6)δ(x6, x6)

Note that δ = 1 only when x6 is equal to x6, otherwise it is equal to 0

4 DAVID SHUE, JOHN VALENTINO

p(x1, x6) =
∑
x2

∑
x3

∑
x4

∑
x5

∑
x6︸ ︷︷ ︸

all of R and x6

p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3)p(x6|x2, x5)δ(x6, x6)

Note that the naive summation is O(k6) or more generally O(kR)

= p(x1)
∑
x2

p(x2|x1)
∑
x3

p(x3|x1)
∑
x4

p(x4|x2)
∑
x5

p(x5|x3)
∑
x6

p(x6|x2, x5)δ(x6, x6)︸ ︷︷ ︸
Define as m6(x2, x5)

= p(x1)
∑
x2

p(x2|x1)
∑
x3

p(x3|x1)
∑
x4

p(x4|x2)
∑
x5

p(x5|x3)m6(x2, x5)︸ ︷︷ ︸
m5(x2, x3)

= p(x1)
∑
x2

p(x2|x1)
∑
x3

p(x3|x1)
∑
x4

p(x4|x2)m5(x2, x3)

Note that m5 does not depend on x4 so we move it out

= p(x1)
∑
x2

p(x2|x1)
∑
x3

p(x3|x1)m5(x2, x3)
∑
x4

p(x4|x2)︸ ︷︷ ︸
m4(x2)

Technically, any non-query/evidence ancestor terms will sum out to 1

= p(x1)
∑
x2

p(x2|x1)m4(x2)
∑
x3

p(x3|x1)m5(x2, x3)︸ ︷︷ ︸
m3(x1, x2)

= p(x1)
∑
x2

p(x2|x1)m4(x2)m3(x1, x2)︸ ︷︷ ︸
m2(x1)

= p(x1)m2(x1)

Finally, we compute the marginals of interest and compute the conditional
probability as the ratio

p(x1, x6) = p(x1)m2(x1)

p(x6) =
∑
x1

p(x1)m2(x1)

p(x1|x6) =
p(x1, x6)

p(x6)

COS 513: FOUNDATIONS OF PROBABILISTIC MODELING LECTURE 3 5

By shifting the summation terms and computing intermediate functions, the
complexity of the computation drops from O(k6) to O(k3)

4. ELIMINATION ALGORITHM

Elimination is a simple approach to probabilistic inference on graphical
models. It is limited in scope since it only computes a single marginal
probability for a designated query node, hence it is rarely used in practice.
However, it lends considerable insight into the general process underlying
inferential computation.

The idea at each step is to sum over a product of functions:

(1) conditional probabilities p(xi|xπi
)

(2) delta functions (for conditioned evidence variables): δ(xi, xi)
(3) intermediate function mi(xSi

) generated by the previous steps

Given a graph G = {V,E}, evidence E, and query node f :

INITIALIZE
Choose a node ordering I such that f is last
Place p(xi|xπi

) on an active list of functions
Place δ(xi, xi) on the active list of functions for evidence nodes

ELIMINATE
for i ∈ I

do
remove all functions from the active list containing xi
construct mi(xSi

) =
∑

xi

∏
selected functions of xi

where Si = union of all arguments to the functions of node xi
add mi(xSi

) to the active list

Note that no j < i in I can appear in Si since they have already been summed out

At the end, NORMALIZE:
p(xf , xE) = φ(xf)
φ(xf) = product of functions left on the active list, which are all functions ofxf
p(xf |xE) =

φ(xf)∑
xf
φ(xf)

(normalization)

Using the elimination order: 6,5,4,3,2,1 the algorithm effectively grouped
the factorized CPT’s by their dependencies and shifted them to the proper
summations, in essence performing the same algebraic manipulation of the
marginalized sums as previously derived.

6 DAVID SHUE, JOHN VALENTINO

5. WHAT IS THE COMPLEXITY OF ELIMINATE?

The complexity of eliminate is controlled by the number of arguments in
the intermediate functions m, which, depend on the chosen elimination or-
dering: O(Kmax(nargs)+1))

(1) Draw the GM as an undirected graph. (Not a UDGM conversion)
(2) Moralize the graph by connecting the parents of each child node.
(3) Remove the nodes in I order, connecting the nodes not previously

attached in order to construct the “reconstituted graph”

FIGURE 4. A Reconstituted Version of the Graphical Model
shown in Figure 1

The complexity of eliminate (with ordering I) is exponential in the largest
clique of the reconstituted graph. In our graph (see above), the largest clique
is of size 3.

FIGURE 5. Star Example: ‘F’ represents the first node re-
moved in the elimination. If ‘F’ is a leaf node then the clique
sizes will be much smaller than if ‘F’ is the center node.

5.1. Does Ordering Matter? If we remove the leafs first, the largest clique
size is 2, which leads to a complexity of O(K2). If we remove the center
first, the largest clique size is the number of leaves, or O(K6).

Finding the optimal ordering is an NP-Hard problem.

