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HTTP Basics (Review)

 HTTP layered over bidirectional byte stream
— Almost always TCP

* |nteraction

— Client sends request to server, followed by response
from server to client

— Requests/responses are encoded in text

e Stateless
— Server maintains no info about past client requests



HTTP Request

* Request line

— Method

* GET —return URI
« HEAD — return headers only of GET response
 POST —send data to the server (forms, etc.)

— URL (relative)
e E.g., /index.html

— HTTP version



HTTP Request (cont.)

* Request headers
— Authorization — authentication info

— Acceptable document types/encodings
— From — user email

— If-Modified-Since
— Referrer — what caused this page to be requested
— User-Agent — client software

* Blank-line

* Body
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HTTP Request Example

GET /HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)

Host: www.intel-iris.net

Connection: Keep-Alive



HTTP Response

e Status-line
— HTTP version

— 3 digit response code
e 1XX —informational

2XX — success
— 200 OK
3XX —redirection
— 301 Moved Permanently
— 303 Moved Temporarily
— 304 Not Modified
4XX — client error
— 404 Not Found
5XX —server error
— 505 HTTP Version Not Supported

— Reason phrase



HTTP Response (cont.)

 Headers
— Location — for redirection
— Server — server software
— WWW-Authenticate — request for authentication
— Allow — list of methods supported (get, head, etc)
— Content-Encoding — E.g x-gzip
— Content-Length
— Content-Type
— Expires
— Last-Modified
* Blank-line

 Body



HTTP Response Example

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1
OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24

Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
ETag: "7al11f-10ed-3a75ae4a"

Accept-Ranges: bytes

Content-Length: 4333

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html
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How to Mark End of Message?

Content-Length
— Must know size of transfer in advance

Close connection
— Only server can do this

Implied length
— E.g., 304 never have body content

Transfer-Encoding: chunked (HTTP/1.1)

— After headers, each chunk is content length in hex,
CRLF, then body. Final chunk is length O.
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Single Transfer Example
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Problems with simple model

 Multiple connection setups
— Three-way handshake each time

e Short transfers are hard on TCP
— Stuck in slow start
— Loss recovery is poor when windows are small

e Lots of extra connections
— Increases server state/processing
— Server forced to keep TIME_WAIT connection state



TCP Interaction: Short Transfers

Multiple connection setups

— Three-way handshake each time

Round-trip time estimation

— Maybe large at the start of a connection (e.g., 3 seconds)
— Leads to latency in detecting lost packets

Congestion window

— Small value at beginning of connection (e.g., 1 MSS)

— May not reach a high value before transfer is done

Detecting packet loss

— Timeout: slow ®
— Duplicate ACK

* Requires many packets in flight
e Which doesn’t happen for very short transfers ®



Persistent Connection Example

0 RTT
Client sends HTTP
request for HTML

1 RTT .................................................
l

Client parses HTML

Client sends HTTP
request for image

2 RTT ..................................................

Image begins to arrive

Server

DAT

DAT

DAT

DAT

——

l Server reads from
disk

l Server reads from
disk




Persistent HTTP

Persistent without pipelining:

Non-persistent HTTP issues:

Requires 2 RTTs per object

OS must allocate resources
for each TCP connection

But browsers often open
parallel TCP connections to

fetch referenced objects

Persistent HTTP:

Server leaves connection
open after sending response

Subsequent HTTP messages
between same client/server
are sent over connection

Client issues new request only
when previous response has

been received
One RTT for each object

Persistent with pipelining:

Default in HTTP/1.1

Client sends requests as soon as
it encounters referenced object

As little as one RTT for all the
referenced objects
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HTTP Caching

Clients often cache documents
— When should origin be checked for changes?
— Every time? Every session? Date?

HTTP includes caching information in headers
— HTTP 0.9/1.0 used: “Expires: <date>"; “Pragma: no-cache”
— HTTP/1.1 has “Cache-Control”

* “No-Cache”, “Private”, “Max-age: <seconds>"
» “E-tag: <opaque value>”

If not expired, use cached copy

If expired, use condition GET request to origin

— “If-Modified-Since: <date>”, “If-None-Match: <etag>"
— 304 (“Not Modified”) or 200 (“OK”) response



Example Cache Check Request

GET /HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
If-None-Match: "7al11f-10ed-3a75ae4a"

User-Agent: Mozilla/4.0 (compat; MSIE 5.5; Windows NT 5.0)
Host: www.intel-iris.net

Connection: Keep-Alive



Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux)
mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2 PHP/
4.0.1pl2 mod_perl/1.24

Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7al11f-10ed-3a75aeda”



Web Proxy Caches

User configures browser: origin
. server
Web accesses via cache

Browser sends all HTTP
requests to cache

L o
— Object in cache: cache o2 ) Qo(\e,e
. S
returns object A0

— Else: cache requests

. . . client .
object from origin, origin

then returns to client server




Caching Example (1)

Assumptions
* Average object size = 100K bits

* Avg. request rate from browsers
to origin servers = 15/sec

* Delay from institutional router
to any origin server and back to
router =2 sec

Consequences
e Utilization on LAN = 15%
e Utilization on access link = 100%

* Total delay =Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

@ i q
ot ﬁﬂ

1.5 Mbps
access link

institutional

origin
servers

e , 10 Mbps LAN




Caching Example (2)

Possible Solution

Increase bandwidth of access
link to, say, 10 Mbps

Often a costly upgrade

Consequences

Utilization on LAN = 15%
Utilization on access link = 15%

Total delay = Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

@ origin
servers
public
Internet _@

10 Mbps
access link

institutional
e , 10 Mbps LAN




Caching Example (3)

Install Cache o
_ . @ origin
* Support hit rate is 40% @ @ servers
public
Conseguences Internct _@
* 40% requests satisfied almost
immediately (say 10 msec) =
* 60% requests satisfied by origin 10 Mbps

* Utilization of access link down to access link

60%. yielding negligib|e delays institutional
network ? 10 Mbps LAN

 Weighted average of delays
= .62s+.4%*10ms < 1.35s

institutional
cache




When a single cache isn’t enough

 What if the working set is > proxy disk?

— Cooperation!

e A static hierarchy
— Check local
— If miss, check siblings
— If miss, fetch through parent

* Internet Cache Protocol (ICP)

— ICPv2 in RFC 2186 (& 2187)
— UDP-based, short timeout

public
Internet

Parent
@ web cache




Problems

 Significant fraction (>50%7?) of HTTP objects uncachable

e Sources of dynamism?
— Dynamic data: Stock prices, scores, web cams
— CGI scripts: results based on passed parameters
— Cookies: results may be based on passed data
— SSL: encrypted data is not cacheable

— Advertising / analytics: owner wants to measure # hits
* Random strings in content to ensure unique counting



Content Distribution Networks (CDNs)

Content providers are CDN
customers

Content replication

CDN company installs thousands
of servers throughout Internet

— In large datacenters
— Or, close to users
CDN replicates customers’ content

When provider updates content,
CDN updates servers

origin server
in North America

i
CDN distri£ution node
|
@/ I\
L9 9 0

] . CDN server
in S. America CDN server ] ]
in Asia
in Europe




Content Distribution Networks &
Server Selection

* Replicate content on many servers

* Challenges
— How to replicate content
— Where to replicate content
— How to find replicated content
— How to choose among know replicas
— How to direct clients towards replica



Server Selection

e Which server?
— Lowest load: to balance load on servers

— Best performance: to improve client performance
* Based on Geography? RTT? Throughput? Load?

— Any alive node: to provide fault tolerance
* How to direct clients to a particular server?
— As part of routing: anycast, cluster load balancing
— As part of application: HTTP redirect
— As part of naming: DNS



Trade-offs between approaches

* Routing based (IP anycast)

— Pros:

— Cons:

* Application based (HTTP redirects)

— Pros:
— Cons:

 Naming based (DNS selection)
— Pros:

— Cons:
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Trade-offs between approaches

* Routing based (IP anycast)

— Pros: Transparent to clients, works when browsers cache
failed addresses, circumvents many routing issues

— Cons: Little control, complex, scalability, TCP can’t recover, ...

* Application based (HTTP redirects)
— Pros: Application-level, fine-grained control
— Cons: Additional load and RTTs, hard to cache

 Naming based (DNS selection)
— Pros: Well-suitable for caching, reduce RTTs

— Cons: Request by resolver not client, request for domain not
URL, hidden load factor of resolver’s population

* Much of this data can be estimated “over time”
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How Akamai Works

e Clients fetch html document from primary server

— E.g. fetch index.html from cnn.com

* URLs for replicated content are replaced in HTML
— E.g. <img src="http://cnn.com/af/x.gif”> replaced with

<img src=http://a73.g.akamai.net/7/23/cnn.com/af/x.gif>
— Or, cache.cnn.com, and CNN adds CNAME (alias) for
cache.cnn.com = a73.g.akamai.net

* Client resolves aXYZ.g.akamaitech.net hostname



How Akamai Works

 Akamai only replicates static content

— At least, simple version. Akamai also lets sites write code
that run on their servers, but that’s a pretty different beast

 Modified name contains original file name

e Akamai server is asked for content
— First checks local cache

— If not in cache, requests from primary server and caches file



How Akamai Works
* Root server gives NS record for akamai.net

* This nameserver returns NS record for g.akamai.net

— Nameserver chosen to be in region of client’s name server
— TTL is large

e g.akamai.net nameserver chooses server in region
— Should try to chose server that has file in cache (How?)
— Uses aXYZ name and hash
— TTLis small (Why?)
— Small modification to before: (Why?)

e CNAME cache.cnn.com = cache.cnn.com.akamaidns.net
* CNAME cache.cnn.com.akamaidns.net = a73.g.akamai.net



Simple Hashing

* Given document group XYZ, choose a server to use

— Suppose we use modulo

 Number servers from 1...n
— Place document XYZ on server (XYZ mod n)
— What happens when a servers fails? n 2 n-1

* Same if different people have different measures of n
— Why might this be bad?



Consistent Hashing

* “view” = subset of all hash buckets that are visible

— For this conversation, “view” is O(n) neighbors
— But don’t need strong consistency on views

* Desired features
— Balanced: in any one view, load is equal across buckets

— Smoothness: little impact on hash bucket contents when
buckets are added/removed

— Spread: small set of hash buckets that may hold an object
regardless of views

— Load: across views, # objects assigned to hash bucket is small



Consistent Hashing

* Construction 0
— Assign each of C hash buckets to random 14
points on mod 2" circle; hash key size = n 1o

— Map object to random position on circle
— Hash of object = closest clockwise bucket

e Desired features

— Balanced: No bucket responsible for large number of objects

— Smoothness: Addition of bucket does not cause movement
among existing buckets

— Spread and load: Small set of buckets that lie near object

e Used layer in P2P Distributed Hash Tables (DHTSs)



How Akamai Works

cnn.com (content provider) DNS root server Akamai server

~ Akamai high-level

L.! DNS server
Akamai low-level

DNS server

Nearby
~_ hash-chosen

L -I!* Akamai

server

GET /cnn.com/foo.jpg
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How Akamai Works — Already Cached

cnn.com (content provider) DNS root server Akamai server

~ Akamai high-level

L.! DNS server
Akamai low-level

DNS server

Nearby
~_ hash-chosen

L ]H Akamai

server

GET /cnn.com/foo.jpg
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Summary

e HTTP: Simple text-based file exchange protocol

— Support for status/error responses, authentication, client-
side state maintenance, cache maintenance

 |nteractions with TCP

— Connection setup, reliability, state maintenance
— Persistent connections

* How to improve performance
— Persistent connections
— Caching
— Replication: Web proxies, cooperative proxies, and CDNs



