Web Content Delivery

Reading: Section 9.1.2 and 9.4.3

COS 461: Computer Networks
Spring 2009 (MW 1:30-2:50 in CS105)

Mike Freedman
Teaching Assistants: Wyatt Lloyd and Jeff Terrace

http://www.cs.princeton.edu/courses/archive/spring09/cos461/

Outline

HTTP review

Persistent HTTP

HTTP caching

Proxying and content distribution networks
— Web proxies

— Hierarchical networks and Internet Cache Protocol (ICP)
— Modern distributed CDNs (Akamai)

HTTP Basics (Review)

 HTTP layered over bidirectional byte stream
— Almost always TCP

* |nteraction

— Client sends request to server, followed by response
from server to client

— Requests/responses are encoded in text

e Stateless
— Server maintains no info about past client requests

HTTP Request

* Request line

— Method

* GET —return URI
« HEAD — return headers only of GET response
 POST —send data to the server (forms, etc.)

— URL (relative)
e E.g., /index.html

— HTTP version

HTTP Request (cont.)

* Request headers
— Authorization — authentication info

— Acceptable document types/encodings
— From — user email

— If-Modified-Since
— Referrer — what caused this page to be requested
— User-Agent — client software

* Blank-line

* Body

HTTP Request

If

request
line

header
lines

Entity Body

HTTP Request Example

GET /HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)

Host: www.intel-iris.net

Connection: Keep-Alive

HTTP Response

e Status-line
— HTTP version

— 3 digit response code
e 1XX —informational

2XX — success
— 200 OK
3XX —redirection
— 301 Moved Permanently
— 303 Moved Temporarily
— 304 Not Modified
4XX — client error
— 404 Not Found
5XX —server error
— 505 HTTP Version Not Supported

— Reason phrase

HTTP Response (cont.)

 Headers
— Location — for redirection
— Server — server software
— WWW-Authenticate — request for authentication
— Allow — list of methods supported (get, head, etc)
— Content-Encoding — E.g x-gzip
— Content-Length
— Content-Type
— Expires
— Last-Modified
* Blank-line

 Body

HTTP Response Example

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1
OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24

Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
ETag: "7al11f-10ed-3a75ae4a"

Accept-Ranges: bytes

Content-Length: 4333

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

10

How to Mark End of Message?

Content-Length
— Must know size of transfer in advance

Close connection
— Only server can do this

Implied length
— E.g., 304 never have body content

Transfer-Encoding: chunked (HTTP/1.1)

— After headers, each chunk is content length in hex,
CRLF, then body. Final chunk is length O.

Outline

HTTP review

Persistent HTTP

HTTP caching

Proxying and content distribution networks
— Web proxies

— Hierarchical networks and Internet Cache Protocol (ICP)
— Modern distributed CDNs (Akamai)

Single Transfer Example

Server
0 RTF SYN
Client opens TCP SYN >
connection 1 RTT-es -
. DAT]
Client sends HTTP
request for HTML DAT l Server 5?:3 s from
2 RTT— w
Client parses HTML l FIN
Client opens TCP
connection SYN
SYN
3 RTT ..
Client sends HTTP DAT
request for image l Server reads from
‘ disk
4 RTT

Image begins to arrive

<

DAT

P
<

Problems with simple model

 Multiple connection setups
— Three-way handshake each time

e Short transfers are hard on TCP
— Stuck in slow start
— Loss recovery is poor when windows are small

e Lots of extra connections
— Increases server state/processing
— Server forced to keep TIME_WAIT connection state

TCP Interaction: Short Transfers

Multiple connection setups

— Three-way handshake each time

Round-trip time estimation

— Maybe large at the start of a connection (e.g., 3 seconds)
— Leads to latency in detecting lost packets

Congestion window

— Small value at beginning of connection (e.g., 1 MSS)

— May not reach a high value before transfer is done

Detecting packet loss

— Timeout: slow ®
— Duplicate ACK

* Requires many packets in flight
e Which doesn’t happen for very short transfers ®

Persistent Connection Example

0 RTT
Client sends HTTP
request for HTML

1 RTT ...
l

Client parses HTML

Client sends HTTP
request for image

2 RTT ..

Image begins to arrive

Server

DAT

DAT

DAT

DAT

——

l Server reads from
disk

l Server reads from
disk

Persistent HTTP

Persistent without pipelining:

Non-persistent HTTP issues:

Requires 2 RTTs per object

OS must allocate resources
for each TCP connection

But browsers often open
parallel TCP connections to

fetch referenced objects

Persistent HTTP:

Server leaves connection
open after sending response

Subsequent HTTP messages
between same client/server
are sent over connection

Client issues new request only
when previous response has

been received
One RTT for each object

Persistent with pipelining:

Default in HTTP/1.1

Client sends requests as soon as
it encounters referenced object

As little as one RTT for all the
referenced objects

17

Outline

HTTP review

Persistent HTTP

HTTP caching

Proxying and content distribution networks
— Web proxies

— Hierarchical networks and Internet Cache Protocol (ICP)
— Modern distributed CDNs (Akamai)

HTTP Caching

Clients often cache documents
— When should origin be checked for changes?
— Every time? Every session? Date?

HTTP includes caching information in headers
— HTTP 0.9/1.0 used: “Expires: <date>"; “Pragma: no-cache”
— HTTP/1.1 has “Cache-Control”

* “No-Cache”, “Private”, “Max-age: <seconds>"
» “E-tag: <opaque value>”

If not expired, use cached copy

If expired, use condition GET request to origin

— “If-Modified-Since: <date>”, “If-None-Match: <etag>"
— 304 (“Not Modified”) or 200 (“OK”) response

Example Cache Check Request

GET /HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
If-None-Match: "7al11f-10ed-3a75ae4a"

User-Agent: Mozilla/4.0 (compat; MSIE 5.5; Windows NT 5.0)
Host: www.intel-iris.net

Connection: Keep-Alive

Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux)
mod_ssl/2.7.1 OpenSSL/0.9.5a DAV/1.0.2 PHP/
4.0.1pl2 mod_perl/1.24

Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7al11f-10ed-3a75aeda”

Web Proxy Caches

User configures browser: origin
. server
Web accesses via cache

Browser sends all HTTP
requests to cache

L o
— Object in cache: cache o2) Qo(\e,e
. S
returns object A0

— Else: cache requests

. . . client .
object from origin, origin

then returns to client server

Caching Example (1)

Assumptions
* Average object size = 100K bits

* Avg. request rate from browsers
to origin servers = 15/sec

* Delay from institutional router
to any origin server and back to
router =2 sec

Consequences
e Utilization on LAN = 15%
e Utilization on access link = 100%

* Total delay =Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

@ i q
ot ﬁﬂ

1.5 Mbps
access link

institutional

origin
servers

e , 10 Mbps LAN

Caching Example (2)

Possible Solution

Increase bandwidth of access
link to, say, 10 Mbps

Often a costly upgrade

Consequences

Utilization on LAN = 15%
Utilization on access link = 15%

Total delay = Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

@ origin
servers
public
Internet _@

10 Mbps
access link

institutional
e , 10 Mbps LAN

Caching Example (3)

Install Cache o
_ . @ origin
* Support hit rate is 40% @ @ servers
public
Conseguences Internct _@
* 40% requests satisfied almost
immediately (say 10 msec) =
* 60% requests satisfied by origin 10 Mbps

* Utilization of access link down to access link

60%. yielding negligib|e delays institutional
network ? 10 Mbps LAN

 Weighted average of delays
= .62s+.4%*10ms < 1.35s

institutional
cache

When a single cache isn’t enough

 What if the working set is > proxy disk?

— Cooperation!

e A static hierarchy
— Check local
— If miss, check siblings
— If miss, fetch through parent

* Internet Cache Protocol (ICP)

— ICPv2 in RFC 2186 (& 2187)
— UDP-based, short timeout

public
Internet

Parent
@ web cache

Problems

 Significant fraction (>50%7?) of HTTP objects uncachable

e Sources of dynamism?
— Dynamic data: Stock prices, scores, web cams
— CGI scripts: results based on passed parameters
— Cookies: results may be based on passed data
— SSL: encrypted data is not cacheable

— Advertising / analytics: owner wants to measure # hits
* Random strings in content to ensure unique counting

Content Distribution Networks (CDNs)

Content providers are CDN
customers

Content replication

CDN company installs thousands
of servers throughout Internet

— In large datacenters
— Or, close to users
CDN replicates customers’ content

When provider updates content,
CDN updates servers

origin server
in North America

i
CDN distri£ution node
|
@/ I\
L9 9 0

] . CDN server
in S. America CDN server]]
in Asia
in Europe

Content Distribution Networks &
Server Selection

* Replicate content on many servers

* Challenges
— How to replicate content
— Where to replicate content
— How to find replicated content
— How to choose among know replicas
— How to direct clients towards replica

Server Selection

e Which server?
— Lowest load: to balance load on servers

— Best performance: to improve client performance
* Based on Geography? RTT? Throughput? Load?

— Any alive node: to provide fault tolerance
* How to direct clients to a particular server?
— As part of routing: anycast, cluster load balancing
— As part of application: HTTP redirect
— As part of naming: DNS

Trade-offs between approaches

* Routing based (IP anycast)

— Pros:

— Cons:

* Application based (HTTP redirects)

— Pros:
— Cons:

 Naming based (DNS selection)
— Pros:

— Cons:

31

Trade-offs between approaches

* Routing based (IP anycast)

— Pros: Transparent to clients, works when browsers cache
failed addresses, circumvents many routing issues

— Cons: Little control, complex, scalability, TCP can’t recover, ...

* Application based (HTTP redirects)

— Pros:
— Cons:

 Naming based (DNS selection)
— Pros:

— Cons:

Trade-offs between approaches

* Routing based (IP anycast)

— Pros: Transparent to clients, works when browsers cache
failed addresses, circumvents many routing issues

— Cons: Little control, complex, scalability, TCP can’t recover, ...

* Application based (HTTP redirects)
— Pros: Application-level, fine-grained control
— Cons: Additional load and RTTs, hard to cache

 Naming based (DNS selection)
— Pros:

— Cons:

Trade-offs between approaches

* Routing based (IP anycast)

— Pros: Transparent to clients, works when browsers cache
failed addresses, circumvents many routing issues

— Cons: Little control, complex, scalability, TCP can’t recover, ...

* Application based (HTTP redirects)
— Pros: Application-level, fine-grained control
— Cons: Additional load and RTTs, hard to cache

 Naming based (DNS selection)
— Pros: Well-suitable for caching, reduce RTTs

— Cons: Request by resolver not client, request for domain not
URL, hidden load factor of resolver’s population

* Much of this data can be estimated “over time”

Outline

HTTP review

Persistent HTTP

HTTP caching

Proxying and content distribution networks
— Web proxies

— Hierarchical networks and Internet Cache Protocol (ICP)
— Modern distributed CDNs (Akamai)

How Akamai Works

e Clients fetch html document from primary server

— E.g. fetch index.html from cnn.com

* URLs for replicated content are replaced in HTML
— E.g. replaced with

— Or, cache.cnn.com, and CNN adds CNAME (alias) for
cache.cnn.com = a73.g.akamai.net

* Client resolves aXYZ.g.akamaitech.net hostname

How Akamai Works

 Akamai only replicates static content

— At least, simple version. Akamai also lets sites write code
that run on their servers, but that’s a pretty different beast

 Modified name contains original file name

e Akamai server is asked for content
— First checks local cache

— If not in cache, requests from primary server and caches file

How Akamai Works
* Root server gives NS record for akamai.net

* This nameserver returns NS record for g.akamai.net

— Nameserver chosen to be in region of client’s name server
— TTL is large

e g.akamai.net nameserver chooses server in region
— Should try to chose server that has file in cache (How?)
— Uses aXYZ name and hash
— TTLis small (Why?)
— Small modification to before: (Why?)

e CNAME cache.cnn.com = cache.cnn.com.akamaidns.net
* CNAME cache.cnn.com.akamaidns.net = a73.g.akamai.net

Simple Hashing

* Given document group XYZ, choose a server to use

— Suppose we use modulo

 Number servers from 1...n
— Place document XYZ on server (XYZ mod n)
— What happens when a servers fails? n 2 n-1

* Same if different people have different measures of n
— Why might this be bad?

Consistent Hashing

* “view” = subset of all hash buckets that are visible

— For this conversation, “view” is O(n) neighbors
— But don’t need strong consistency on views

* Desired features
— Balanced: in any one view, load is equal across buckets

— Smoothness: little impact on hash bucket contents when
buckets are added/removed

— Spread: small set of hash buckets that may hold an object
regardless of views

— Load: across views, # objects assigned to hash bucket is small

Consistent Hashing

* Construction 0
— Assign each of C hash buckets to random 14
points on mod 2" circle; hash key size = n 1o

— Map object to random position on circle
— Hash of object = closest clockwise bucket

e Desired features

— Balanced: No bucket responsible for large number of objects

— Smoothness: Addition of bucket does not cause movement
among existing buckets

— Spread and load: Small set of buckets that lie near object

e Used layer in P2P Distributed Hash Tables (DHTSs)

How Akamai Works

cnn.com (content provider) DNS root server Akamai server

~ Akamai high-level

L.! DNS server
Akamai low-level

DNS server

Nearby
~_ hash-chosen

L -I!* Akamai

server

GET /cnn.com/foo.jpg

42

How Akamai Works — Already Cached

cnn.com (content provider) DNS root server Akamai server

~ Akamai high-level

L.! DNS server
Akamai low-level

DNS server

Nearby
~_ hash-chosen

L]H Akamai

server

GET /cnn.com/foo.jpg

43

Summary

e HTTP: Simple text-based file exchange protocol

— Support for status/error responses, authentication, client-
side state maintenance, cache maintenance

 |nteractions with TCP

— Connection setup, reliability, state maintenance
— Persistent connections

* How to improve performance
— Persistent connections
— Caching
— Replication: Web proxies, cooperative proxies, and CDNs

