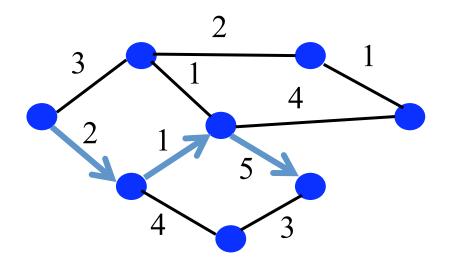


Distance-Vector and Path-Vector Routing

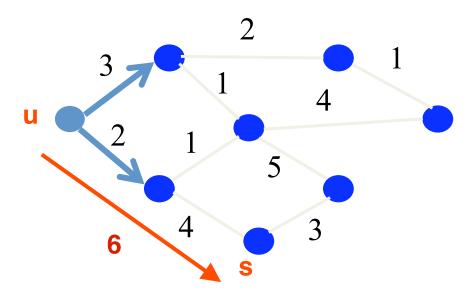
COS 461: Computer Networks
Spring 2009 (MW 1:30-2:50 in COS 105)

Michael Freedman

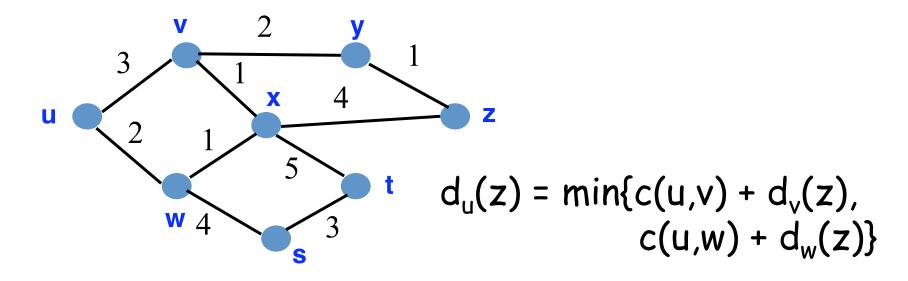

Teaching Assistants: Wyatt Lloyd and Jeff Terrace http://www.cs.princeton.edu/courses/archive/spring09/cos461/

Goals of Today's Lecture

- Distance-vector routing
 - Bellman-Ford algorithm
 - Routing Information Protocol (RIP)
- Path-vector routing
 - Faster convergence than distance vector
 - More flexibility in selecting paths
- Interdomain routing
 - Autonomous Systems (AS)
 - Border Gateway Protocol (BGP)


Shortest-Path Routing

- Path-selection model
 - Destination-based
 - Load-insensitive (e.g., static link weights)
 - Minimum hop count or sum of link weights


Shortest-Path Problem

- Compute: path costs to all nodes
 - From a given source u to all other nodes
 - Cost of the path through each outgoing link
 - Next hop along the least-cost path to s

Bellman-Ford Algorithm

- Define distances at each node x
 - $d_x(y) = cost of least-cost path from x to y$
- Update distances based on neighbors
 - $-d_x(y) = \min \{c(x,v) + d_v(y)\}$ over all neighbors v

Distance Vector Algorithm

- c(x,v) = cost for direct link from x to v
 - Node x maintains costs of direct links c(x,v)
- $D_x(y)$ = estimate of least cost from x to y
 - Node x maintains distance vector $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbf{N}]$
- Node x maintains its neighbors' distance vectors
 - For each neighbor v, x maintains $D_v = [D_v(y): y \in N]$
- Each node v periodically sends D_v to its neighbors
 - And neighbors update their own distance vectors
 - $-D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$
- Over time, the distance vector D_x converges

Distance Vector Algorithm

Iterative, asynchronous:

each local iteration caused by:

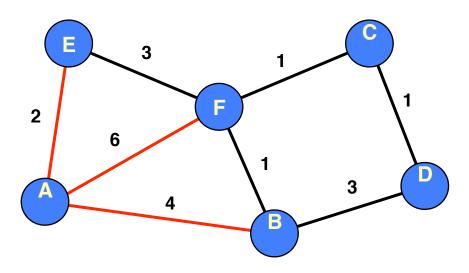
- Local link cost change
- Distance vector update message from neighbor

Distributed:

- Each node notifies neighbors only when its DV changes
- Neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or message from neighbor)


recompute estimates

if distance to any destination has changed, *notify* neighbors

Distance Vector Example: Step 1

Optimum 1-hop paths

Та	able for	Α	Table for B				
Dst	Cst Hop		Dst	Cst	Нор		
Α	0	Α	Α	4	Α		
В	4	В	В	0	В		
С	∞	_	С	∞	_		
D	∞	_	D	3	D		
Е	2	Е	E ∞		_		
F	6 F		F 1		F		

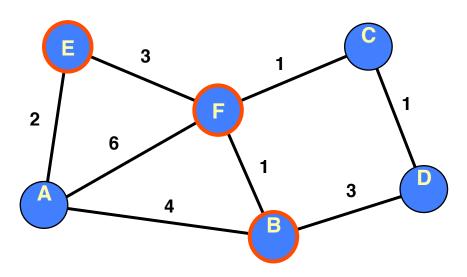


Table for C		Table for D			Table for E			Table for F			
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
Α	8	1	Α	8	1	Α	2	Α	Α	6	Α
В	%	1	В	3	В	В	8	1	В	1	В
С	0	С	С	1	С	С	∞	1	С	1	С
D	1	D	D	0	D	D	∞	-	D	∞	-
Е	∞	-	Е	∞	_	Е	0	Е	Е	3	Е
F	1	F	F	8	_	F	3	F	F	0	F

Distance Vector Example: Step 2

Optimum 2-hop paths

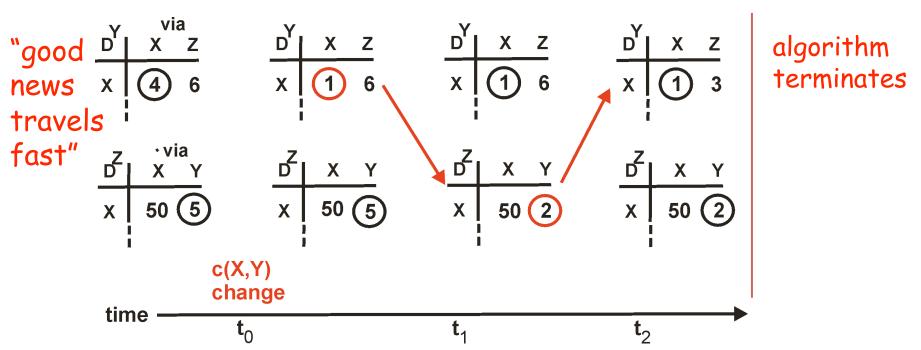
Ta	able for	Α.	Table for B				
Dst	Cst Hop		Dst	Cst	Нор		
Α	0	Α	Α	4	Α		
В	4	В	В	0	В		
С	7	F	С	2	F		
D	7	В	D	3	D		
Е	2	Е	E 4		F		
F	5	Е	F	1	F		

Table for C		Table for D			Table for E			Table for F			
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
Α	7	F	Α	7	В	Α	2	Α	Α	5	В
В	2	F	В	3	В	В	4	F	В	1	В
С	0	С	С	1	С	С	4	F	С	1	С
D	1	D	D	0	D	D	∞	-	D	2	С
Е	4	F	Е	∞	_	Е	0	Е	Е	3	Е
F	1	F	F	2	С	F	3	F	F	0	F

Distance Vector Example: Step 3

Optimum 3-hop paths

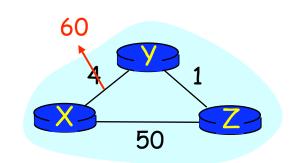
Ta	able for	Α	Table for B				
Dst	Cst Hop		Dst	Cst	Нор		
Α	0	Α	Α	4	Α		
В	4	В	В	0	В		
С	6	Е	С	2	F		
D	7	В	D	3	D		
Е	2	Е	E 4		F		
F	5	Е	F	1	F		

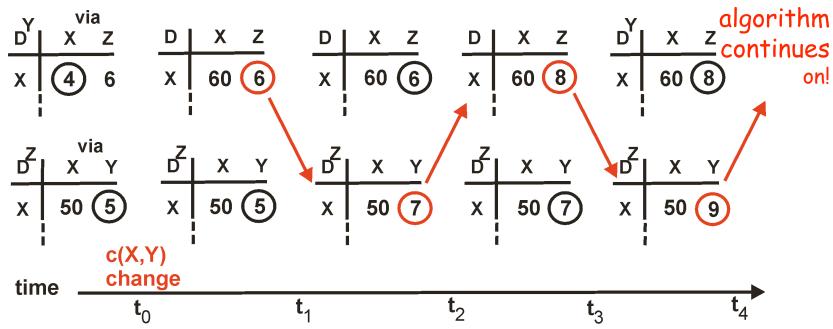

Table for C		Table for D			Table for E			Table for F			
Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор	Dst	Cst	Нор
Α	6	F	Α	7	В	Α	2	Α	Α	5	В
В	2	F	В	3	В	В	4	F	В	1	В
С	0	С	С	1	С	С	4	F	С	1	С
D	1	D	D	0	D	D	5	F	D	2	С
Е	4	F	Е	5	С	Е	0	Е	Е	3	Е
F	1	F	F	2	С	F	3	F	F	0	F

Distance Vector: Link Cost Changes

Link cost changes:

- Node detects local link cost change
- Updates the distance table
- If cost change in least cost path, notify neighbors

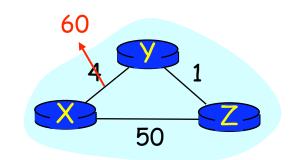


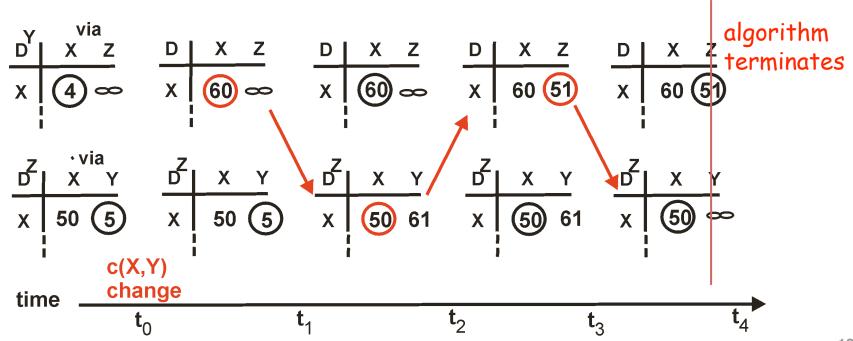


Distance Vector: Link Cost Changes

Link cost changes:

- Good news travels fast
- Bad news travels slow "count to infinity" problem!




Distance Vector: Poison Reverse

If Z routes through Y to get to X:

 Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)

 Still, can have problems when more than 2 routers are involved

Routing Information Protocol (RIP)

Distance vector protocol

- Nodes send distance vectors every 30 seconds
- ... or, when an update causes a change in routing

Link costs in RIP

- All links have cost 1
- Valid distances of 1 through 15
- ... with 16 representing infinity
- Small "infinity" → smaller "counting to infinity" problem

RIP is limited to fairly small networks

E.g., used in the Princeton campus network

Comparison of LS and DV Routing

Message complexity

- <u>LS</u>: with n nodes, E links,
 O(nE) messages sent
- <u>DV</u>: exchange between neighbors only

Speed of Convergence

- LS: relatively fast
- <u>DV</u>: convergence time varies
 - May be routing loops
 - Count-to-infinity problem

Robustness: what happens if router malfunctions?

LS:

- Node can advertise incorrect *link* cost
- Each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- Each node's table used by others (error propagates)

Similarities of LS and DV Routing

Shortest-path routing

- Metric-based, using link weights
- Routers share a common view of how good a path is

As such, commonly used inside an organization

- RIP and OSPF are mostly used as intradomain protocols
- E.g., Princeton uses RIP, and AT&T uses OSPF

But the Internet is a "network of networks"

- How to stitch the many networks together?
- When networks may not have common goals
- ... and may not want to share information

Interdomain Routing and Autonomous Systems (ASes)

Interdomain Routing

- Internet is divided into Autonomous Systems
 - Distinct regions of administrative control
 - Routers/links managed by a single "institution"
 - Service provider, company, university, ...
- Hierarchy of Autonomous Systems
 - Large, tier-1 provider with a nationwide backbone
 - Medium-sized regional provider with smaller backbone
 - Small network run by a single company or university
- Interaction between Autonomous Systems
 - Internal topology is not shared between ASes
 - ... but, neighboring ASes interact to coordinate routing

Autonomous System Numbers

AS Numbers are 16 bit values.

Currently over 50,000 in use.

- Level 3: 1
- MIT: 3
- Harvard: 11
- Yale: 29
- Princeton: 88
- AT&T: 7018, 6341, 5074, ...
- UUNET: 701, 702, 284, 12199, ...
- Sprint: 1239, 1240, 6211, 6242, ...
- ...

whois -h whois.arin.net as88

OrgName: Princeton University

OrgID: PRNU

Address: Office of Information Technology

Address: 87 Prospect Avenue

City: Princeton

StateProv: NJ

PostalCode: 08540

Country: US

ASNumber: 88

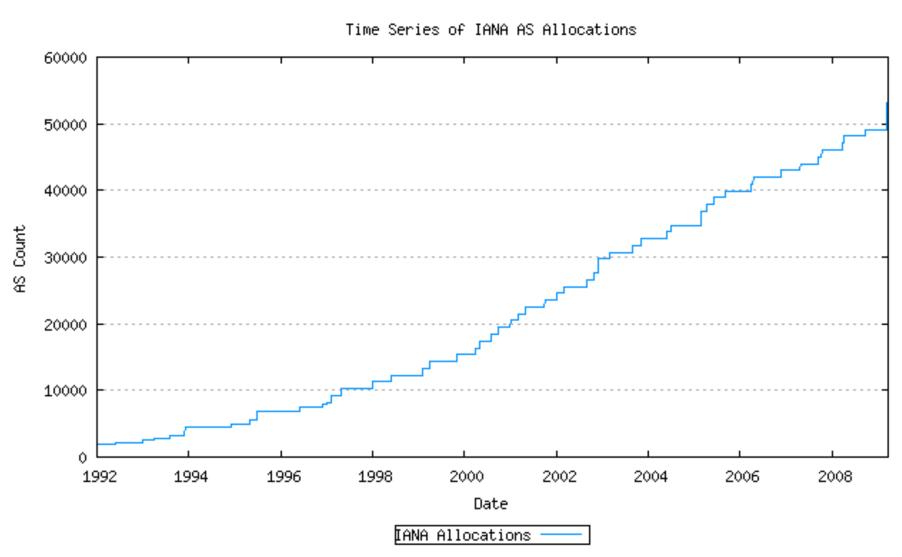
ASName: PRINCETON-AS

ASHandle: AS88

Comment: RegDate:

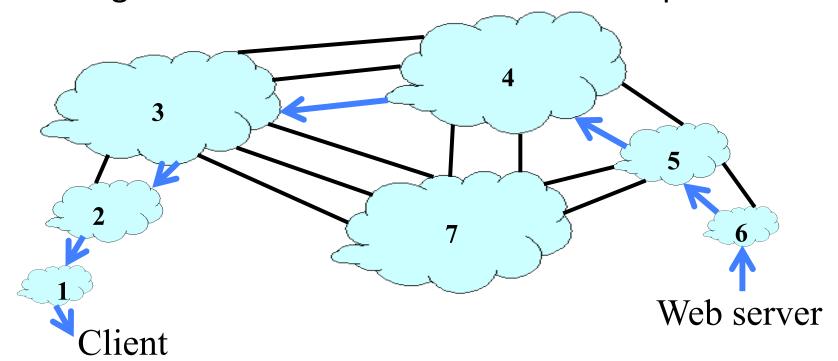
Updated: 2008-03-07

RTechHandle: PAO3-ARIN RTechName: Olenick, Peter RTechPhone: +1-609-258-6024


RTechEmail: polenick@princeton.edu

...

AS Number Trivia


- AS number is a 16-bit quantity
 - So, 65,536 unique AS numbers
- Some are reserved (e.g., for private AS numbers)
 - So, only 64,510 are available for public use
- Managed by Internet Assigned Numbers Authority
 - Gives blocks of 1024 to Regional Internet Registries
 - IANA has allocated 39,934 AS numbers to RIRs (Jan'06)
- RIRs assign AS numbers to institutions
 - RIRs have assigned 34,827 (Jan'06)
 - Only 21,191 are visible in interdomain routing (Jan'06)
- Recently started assigning 32-bit AS #s (2007)

Growth of AS numbers

Interdomain Routing

- AS-level topology
 - Destinations are IP prefixes (e.g., 12.0.0.0/8)
 - Nodes are Autonomous Systems (ASes)
 - Edges are links and business relationships

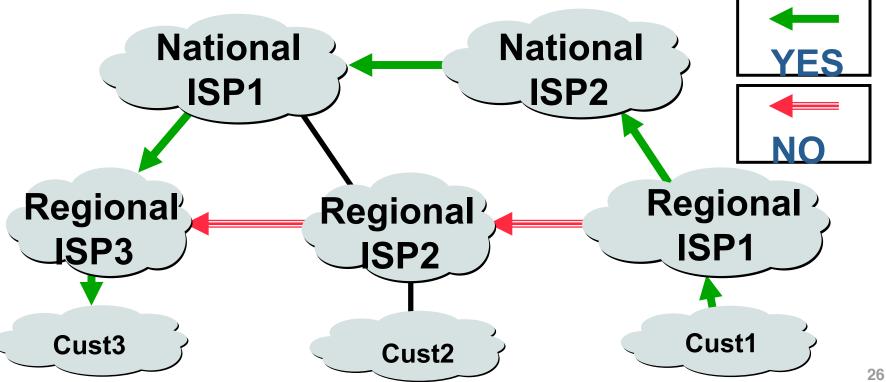
Challenges for Interdomain Routing

Scale

- Prefixes: 200,000, and growing
- ASes: 20,000+ visible ones, and 60K allocated
- Routers: at least in the millions...

Privacy

- ASes don't want to divulge internal topologies
- ... or their business relationships with neighbors


Policy

- No Internet-wide notion of a link cost metric
- Need control over where you send traffic
- ... and who can send traffic through you

Path-Vector Routing

Shortest-Path Routing is Restrictive

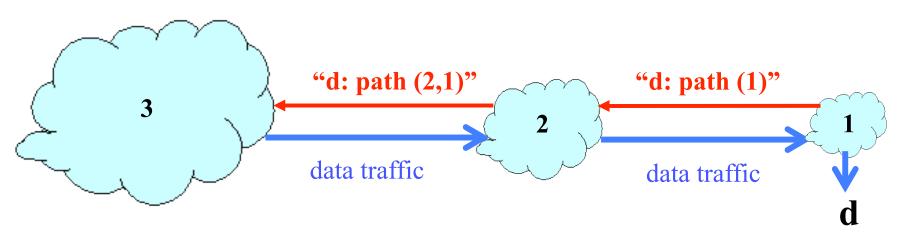
- All traffic must travel on shortest paths
- All nodes need common notion of link costs
- Incompatible with commercial relationships

Link-State Routing is Problematic

- Topology information is flooded
 - High bandwidth and storage overhead
 - Forces nodes to divulge sensitive information
- Entire path computed locally per node
 - High processing overhead in a large network
- Minimizes some notion of total distance
 - Works only if policy is shared and uniform
- Typically used only inside an AS
 - E.g., OSPF and IS-IS

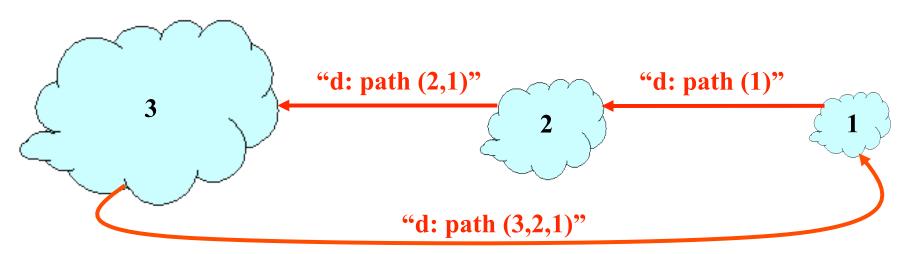
Distance Vector is on the Right Track

Advantages


- Hides details of the network topology
- Nodes determine only "next hop" toward the dest

Disadvantages

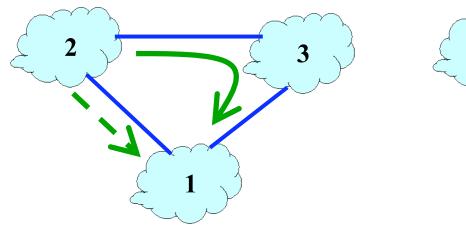
- Minimizes some notion of total distance, which is difficult in an interdomain setting
- Slow convergence due to the counting-to-infinity problem ("bad news travels slowly")
- Idea: extend the notion of a distance vector
 - To make it easier to detect loops

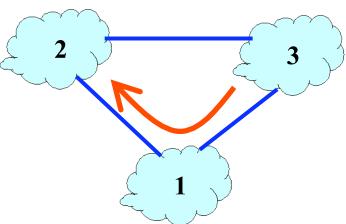

Path-Vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d

Faster Loop Detection

- Node can easily detect a loop
 - Look for its own node identifier in the path
 - E.g., node 1 sees itself in the path "3, 2, 1"
- Node can simply discard paths with loops
 - E.g., node 1 simply discards the advertisement

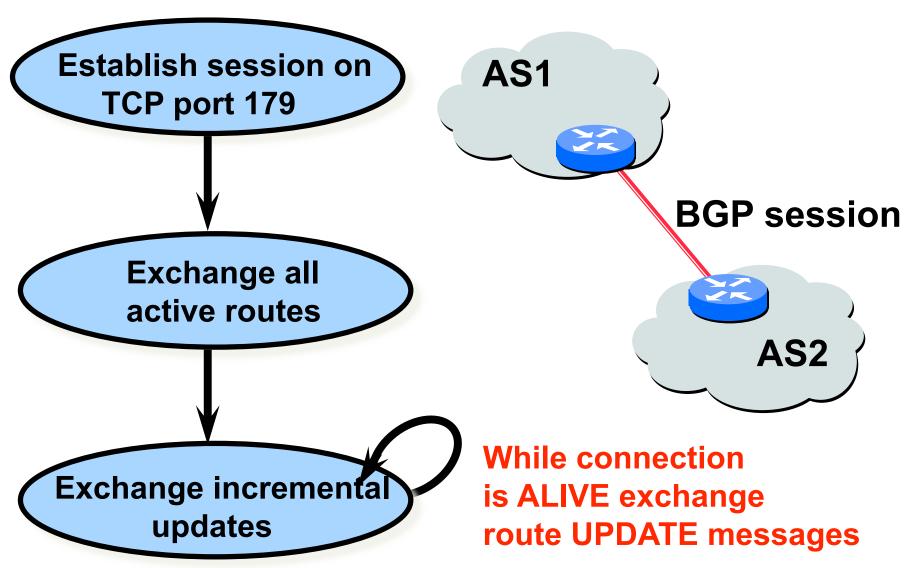



Flexible Policies

- Each node can apply local policies
 - Path selection: Which path to use?
 - Path export: Which paths to advertise?

Examples

- Node 2 may prefer the path "2, 3, 1" over "2, 1"
- Node 1 may not let node 3 hear the path "1, 2"



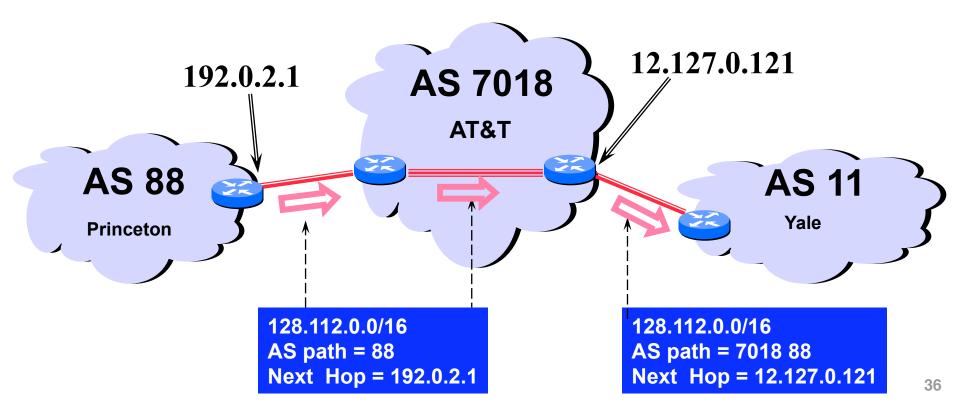
Border Gateway Protocol (BGP)

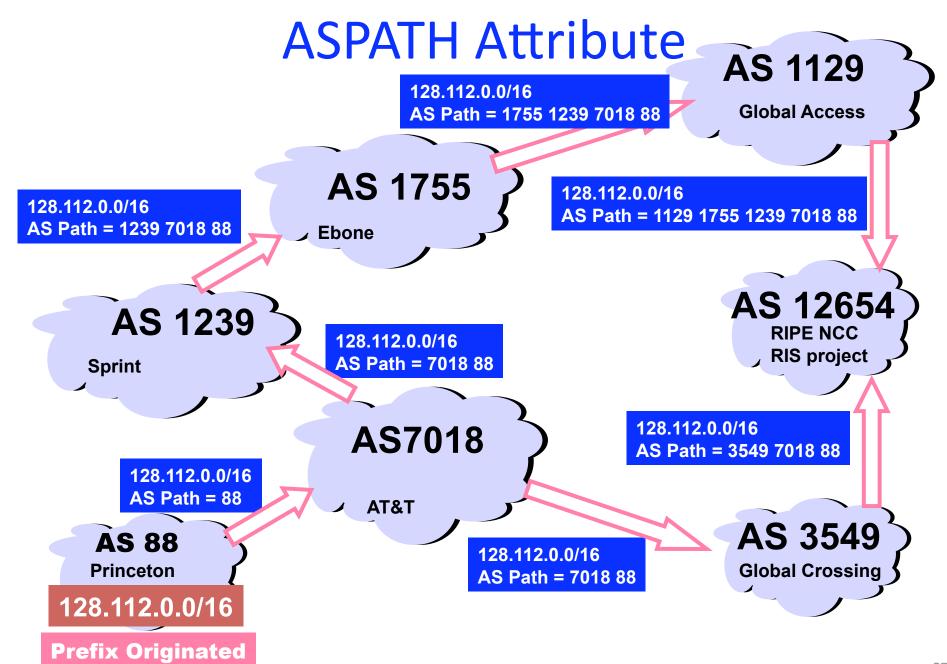
Border Gateway Protocol

- Interdomain routing protocol for the Internet
 - Prefix-based path-vector protocol
 - Policy-based routing based on AS Paths
 - Evolved during the past 18 years
 - 1989: BGP-1 [RFC 1105], replacement for EGP
 - 1990 : BGP-2 [RFC 1163]
 - 1991 : BGP-3 [RFC 1267]
 - 1995 : BGP-4 [RFC 1771], support for CIDR
 - 2006: BGP-4 [RFC 4271], update

BGP Operations

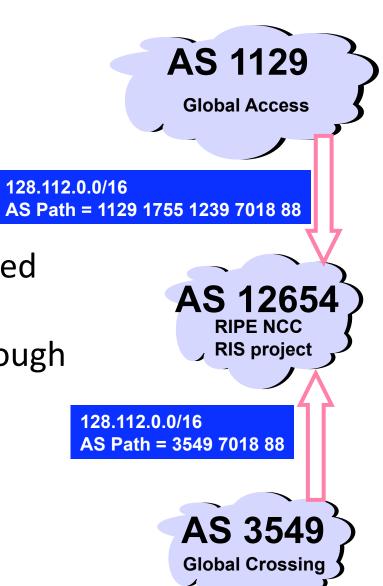
Incremental Protocol

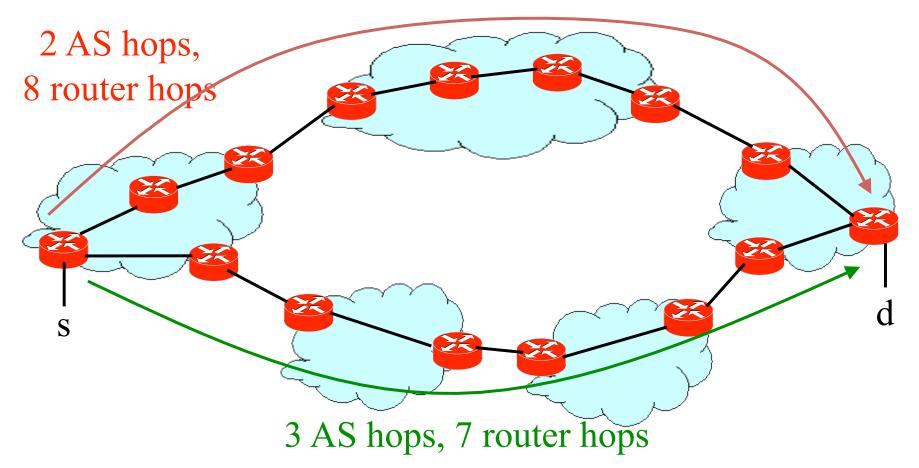

- A node learns multiple paths to destination
 - Stores all of the routes in a routing table
 - Applies policy to select a single active route
 - ... and may advertise the route to its neighbors


Incremental updates

- Announcement
 - Upon selecting a new active route, add node id to path
 - ... and (optionally) advertise to each neighbor
- Withdrawal
 - If the active route is no longer available
 - ... send a withdrawal message to the neighbors

BGP Route


- Destination prefix (e.g., 128.112.0.0/16)
- Route attributes, including
 - AS path (e.g., "7018 88")
 - Next-hop IP address (e.g., 12.127.0.121)


BGP Path Selection

- Simplest case
 - Shortest AS path
 - Arbitrary tie break
- Example
 - Three-hop AS path preferred over a five-hop AS path
 - AS 12654 prefers path through Global Crossing
- But, BGP is not limited to shortest-path routing
 - Policy-based routing

AS Path Length != Router Hops

- AS path may be longer than shortest AS path
- Router path may be longer than shortest path

BGP Convergence

Causes of BGP Routing Changes

Topology changes

- Equipment going up or down
- Deployment of new routers or sessions

BGP session failures

- Due to equipment failures, maintenance, etc.
- Or, due to congestion on the physical path

Changes in routing policy

- Changes in preferences in the routes
- Changes in whether the route is exported

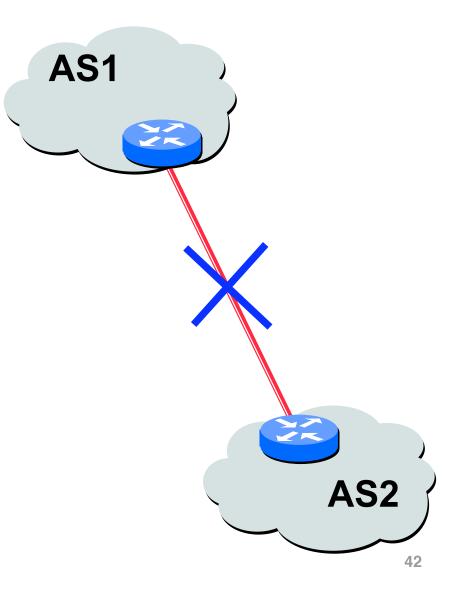
Persistent protocol oscillation

Conflicts between policies in different ASes

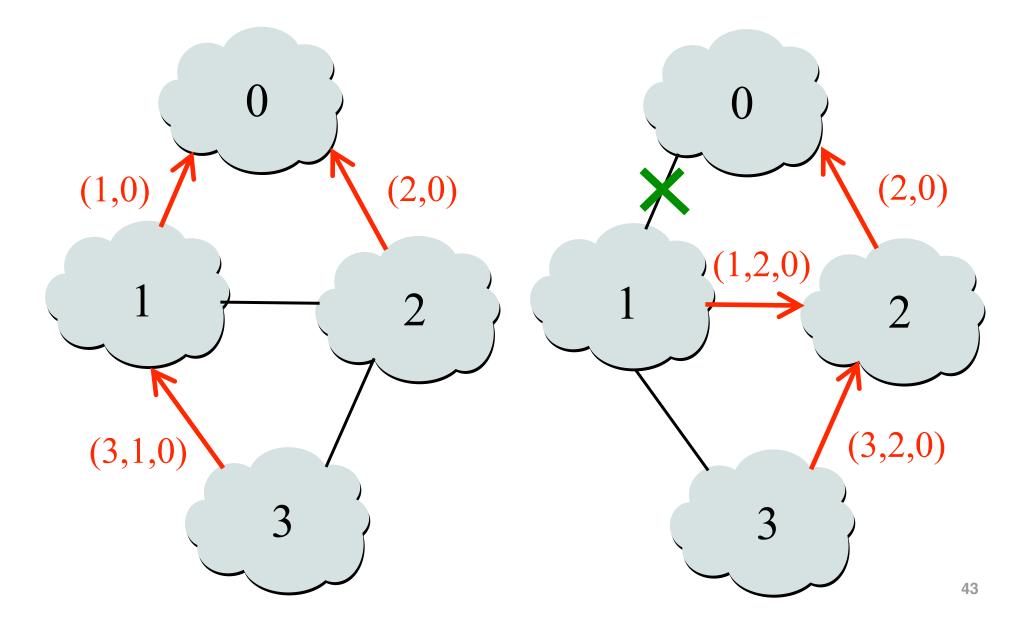
BGP Session Failure

BGP runs over TCP

- BGP only sends updates when changes occur
- TCP doesn't detect lost connectivity on its own


Detecting a failure

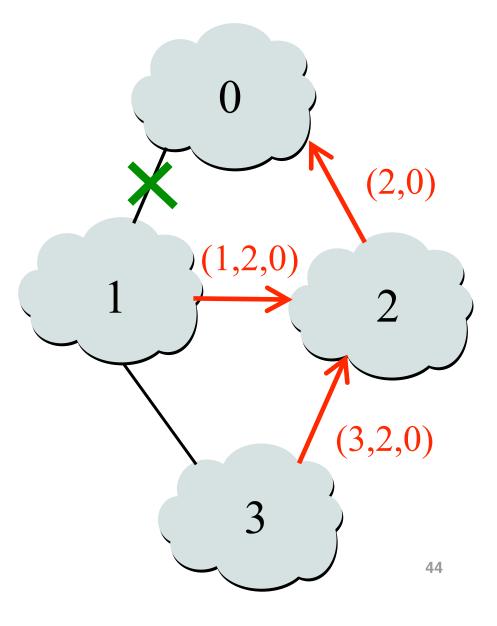
– Keep-alive: 60 seconds


- Hold timer: 180 seconds

Reacting to a failure

- Discard all routes learned from the neighbor
- Send new updates for any routes that change

Routing Change: Before and After


Routing Change: Path Exploration

• AS 1

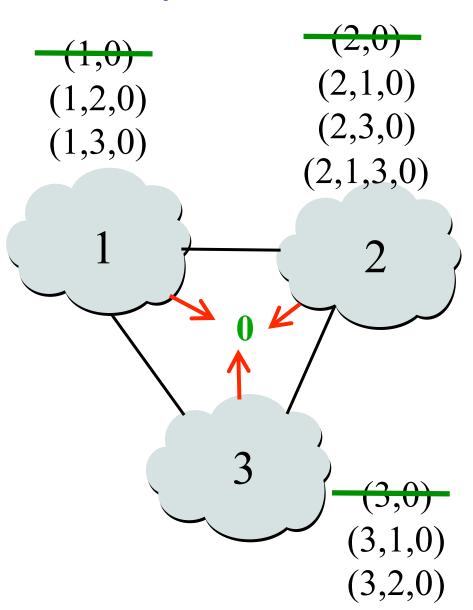
- Delete the route (1,0)
- Switch to next route(1,2,0)
- Send route (1,2,0) to AS 3

AS 3

- Sees (1,2,0) replace (1,0)
- Compares to route (2,0)
- Switches to using AS 2

Routing Change: Path Exploration

Initial situation


- Destination 0 is alive
- All ASes use direct path

When destination dies

- All ASes lose direct path
- All switch to longer paths
- Eventually withdrawn

• E.g., AS 2

- $-(2,0) \rightarrow (2,1,0)$
- $-(2,1,0) \rightarrow (2,3,0)$
- $-(2,3,0) \rightarrow (2,1,3,0)$
- $-(2,1,3,0) \rightarrow \text{null}$

BGP Converges Slowly

- Path vector avoids count-to-infinity
 - But, ASes still must explore many alternate paths
 - ... to find the highest-ranked path that is still available
- Fortunately, in practice
 - Most popular destinations have very stable BGP routes
 - And most instability lies in a few unpopular destinations
- Still, lower BGP convergence delay is a goal
 - Can be tens of seconds to tens of minutes
 - High for important interactive applications
 - ... or even conventional application, like Web browsing

Conclusions

- Distance-vector routing
 - Compute path costs based on neighbors' path costs
 - Bellman-Ford algorithm & Routing Information Protocol
- Path-vector routing
 - Faster convergence than distance-vector protocols
 - While hiding information and enabling flexible policy
- Interdomain routing
 - Autonomous Systems (ASes)
 - Policy-based path-vector routing
- Next time: interdomain routing policies