

Switches and Bridges

COS 461: Computer Networks Spring 2009 (MW 1:30-2:50 in COS 105)

Guest Lecture

Jennifer Rexford

Goals of Today's Lecture

- Devices that shuttle data at different layers
 - -Repeaters and hubs
 - -Bridges and switches
 - -Routers
- Switch protocols and mechanisms

 Dedicated access and full-duplex transfers
 Cut-through switching
 Self learning of the switch table
 Spanning trees
- Virtual LANs (VLANs)

Message, Segment, Packet, and Frame

Shuttling Data at Different Layers

- Different devices switch different things
 - -Network layer: packets (routers)
 - -Link layer: frames (bridges and switches)
 - Physical layer: electrical signals (repeaters and hubs)

Physical Layer: Repeaters

- Distance limitation in local-area networks
 - Electrical signal becomes weaker as it travels
 - Imposes a limit on the length of a LAN
- Repeaters join LANs together
 - -Analog electronic device
 - Continuously monitors electrical signals on each LAN
 - Transmits an amplified copy

Physical Layer: Hubs

6

- Joins multiple input lines electrically

 Designed to hold multiple line cards
 Do not necessarily amplify the signal
- Very similar to repeaters — Also operates at the physical layer

Limitations of Repeaters and Hubs

- One large shared link
 - Each bit is sent everywhere
 - So, aggregate throughput is limited
 - -E.g., three departments each get 10 Mbps independently
 - -... and then connect via a hub and must share 10 Mbps
- Cannot support multiple LAN technologies
 - Does not buffer or interpret frames
 - So, can't interconnect between different rates or formats
 - -E.g., 10 Mbps Ethernet and 100 Mbps Ethernet
- Limitations on maximum nodes and distances
 - Shared medium imposes length limits
 - -E.g., cannot go beyond 2500 meters on Ethernet

Link Layer: Bridges

- Connects two or more LANs at the link layer
 - Extracts destination address from the frame
 - -Looks up the destination in a table
 - -Forwards the frame to the appropriate LAN segment
- Each segment can carry its own traffic

Link Layer: Switches

- Typically connects individual computers

 A switch is essentially the same as a bridge
 ... though typically used to connect hosts, not LANs
- Like bridges, support concurrent communication – Host A can talk to C, while B talks to D

Dedicated Access and Full Duplex

- Dedicated access
 - -Host has direct connection to the switch
 - -... rather than a shared LAN connection
- Full duplex
 - -Each connection can send in both directions
 - -Host sending to switch, and host receiving from switch
 - -E.g., in 10BaseT and 100Base T
- Completely supports concurrent transmissions – Each connection is a bidirectional point-to-point link

Bridges/Switches: Traffic Isolation

- Switch breaks subnet into LAN segments
- Switch filters packets
 - Frame only forwarded to the necessary segments
 - Segments can support separate transmissions

Advantages Over Hubs/Repeaters

- Only forwards frames as needed
 - Filters frames to avoid unnecessary load on segments
 - Sends frames only to segments that need to see them
- Extends the geographic span of the network – Separate segments allow longer distances
- Improves privacy by limiting scope of frames

 Hosts can "snoop" the traffic traversing their segment
 ... but not all the rest of the traffic
- Can join segments using different technologies

Disadvantages Over Hubs/Repeaters

- Delay in forwarding frames
 - Bridge/switch must receive and parse the frame
 - -... and perform a look-up to decide where to forward
 - Storing and forwarding the packet introduces delay
 - Solution: cut-through switching
- Need to learn where to forward frames
 - -Bridge/switch needs to construct a forwarding table
 - Ideally, without intervention from network administrators
 - Solution: self-learning
- Higher cost
 - More complicated devices that cost more money

Motivation For Cut-Through Switching

- Buffering a frame takes time
 - Suppose L is the length of the frame
 - -And R is the transmission rate of the links
 - Then, receiving the frame takes L/R time units
- Buffering delay can be a high fraction of total delay

 Propagation delay is small over short distances
 Making buffering delay a large fraction of total
 Analogy: large group walking through NYC

Cut-Through Switching

- Start transmitting as soon as possible
 - Inspect the frame header and do the look-up
 - If outgoing link is idle, start forwarding the frame
- Overlapping transmissions

 Transmit the head of the packet via the outgoing link
 ... while still receiving the tail via the incoming link
 Analogy: different folks crossing different intersections

Motivation For Self Learning

- Switches forward frames selectively
 - -Forward frames only on segments that need them
- Switch table
 - Maps destination MAC address to outgoing interface
 - Goal: construct the switch table automatically

Self Learning: Building the Table

- When a frame arrives
 - Inspect the source MAC address
 - -Associate the address with the incoming interface
 - Store the mapping in the switch table
 - -Use a time-to-live field to eventually forget the mapping

Self Learning: Handling Misses

- When frame arrives with unfamiliar destination
 - -Forward the frame out all of the interfaces
 - -... except for the one where the frame arrived
 - Hopefully, this case won't happen very often

Flooding Can Lead to Loops

- Switches sometimes need to broadcast frames

 Upon receiving a frame with an unfamiliar destination
 Upon receiving a frame sent to the broadcast address
- Broadcasting is implemented by flooding

 Transmitting frame out every interface
 ... except the one where the frame arrived
- Flooding can lead to forwarding loops

 E.g., if the network contains a cycle of switches
 Either assidentally, or by design for higher reliable
 - Either accidentally, or by design for higher reliability

Solution: Spanning Trees

- Ensure the topology has no loops
 - -Avoid using some of the links when flooding
 - -... to avoid forming a loop
- Spanning tree
 - Sub-graph that covers all vertices but contains no cycles
 - -Links not in the spanning tree do not forward frames

Constructing a Spanning Tree

- Need a distributed algorithm
 - -Switches cooperate to build the spanning tree
 - -... and adapt automatically when failures occur

One hop

- Key ingredients of the algorithm – Switches need to elect a "root"
 - The switch with the smallest identifier
 - Each switch identifies if its interface is on the shortest path from the root
 - And it exclude from the tree if not
 - -Messages (Y, d, X)
 - From node X
 - Claiming Y is the root
 - And the distance is d

root

Steps in Spanning Tree Algorithm

- Initially, each switch thinks it is the root

 Switch sends a message out every interface
 identifying itself as the root with distance 0
 Example: switch X announces (X, 0, X)
 - Switches update their view of the root

 Upon receiving a message, check the root id
 If the new id is smaller, start viewing that switch as root
 - Switches compute their distance from the root

 Add 1 to the distance received from a neighbor
 Identify interfaces not on a shortest path to the root
 and exclude them from the spanning tree

Example From Switch #4's Viewpoint

- Switch #4 thinks it is the root
 Sends (4, 0, 4) message to 2 and 7
- Then, switch #4 hears from #2

 Receives (2, 0, 2) message from 2
 ... and thinks that #2 is the root
 And realizes it is just one hop away
- Then, switch #4 hears from #7

 Receives (2, 1, 7) from 7
 And realizes this is a longer path
 So, prefers its own one-hop path
 And removes 4-7 link from the tree

Example From Switch #4's Viewpoint

- Switch #2 hears about switch #1

 Switch 2 hears (1, 1, 3) from 3
 Switch 2 starts treating 1 as root
 And sends (1, 2, 2) to neighbors
 - Switch #4 hears from switch #2

 Switch 4 starts treating 1 as root
 And sends (1, 3, 4) to neighbors
 - Switch #4 hears from switch #7

 Switch 4 receives (1, 3, 7) from 7
 And realizes this is a longer path
 So, prefers its own three-hop path
 And removes 4-7 link from the tree

Robust Spanning Tree Algorithm

- Algorithm must react to failures
 - -Failure of the root node
 - Need to elect a new root, with the next lowest identifier
 - Failure of other switches and links
 - Need to recompute the spanning tree
- Root switch continues sending messages

 Periodically reannouncing itself as the root (1, 0, 1)
 Other switches continue forwarding messages
- Detecting failures through timeout (soft state!)
 - Switch waits to hear from others
 - Eventually times out and claims to be the root

See Section 3.2.2 in the textbook for details and another example $_{26}$

Evolution Toward Virtual LANs

- In the olden days...
 - Thick cables snaked through cable ducts in buildings
 - Every computer they passed was plugged in
 - All people in adjacent offices were put on the same LAN
 Independent of whether they belonged together or not
- More recently...
 - -Hubs and switches changed all that
 - Every office connected to central wiring closets
 - Often multiple LANs (k hubs) connected by switches
 - Flexibility in mapping offices to different LANs

Group users based on organizational structure, rather than the physical layout of the building.

Why Group by Organizational Structure?

- Security
 - Ethernet is a shared media
 - Any interface card can be put into "promiscuous" mode
 - -... and get a copy of all of the traffic (e.g., midterm exam)
 - -So, isolating traffic on separate LANs improves security
- Load
 - Some LAN segments are more heavily used than others
 - -E.g., researchers running experiments get out of hand
 - $-\ldots$ can saturate their own segment and not the others
 - -Plus, there may be natural locality of communication
 - -E.g., traffic between people in the same research group

People Move, and Roles Change

- Organizational changes are frequent
 - -E.g., faculty office becomes a grad-student office
 - -E.g., graduate student becomes a faculty member
- Physical rewiring is a major pain
 Requires upply gring the cable from one
 - Requires unplugging the cable from one port
 - -... and plugging it into another
 - $-\ldots$ and hoping the cable is long enough to reach
 - -... and hoping you don't make a mistake
- Would like to "rewire" the building in software — The resulting concept is a Virtual LAN (VLAN)

Making VLANs Work

- Bridges/switches need configuration tables – Saying which VLANs are accessible via which interfaces
- Approaches to mapping to VLANs
 - Each interface has a VLAN color
 - Only works if all hosts on same segment belong to same VLAN
 - Each MAC address has a VLAN color
 - Useful when hosts on same segment belong to different VLANs
 - Useful when hosts move from one physical location to another
- Changing the Ethernet header
 - -Adding a field for a VLAN tag
 - Implemented on the bridges/switches
 - -... but can still interoperate with old Ethernet cards

Moving From Switches to Routers

- Advantages of switches over routers
 - Plug-and-play
 - Fast filtering and forwarding of frames
 - No pronunciation ambiguity (e.g., "rooter" vs. "rowter")
- Disadvantages of switches over routers
 - Topology is restricted to a spanning tree
 - -Large networks require large ARP tables
 - Broadcast storms can cause the network to collapse

Comparing Hubs, Switches, Routers

	Hub/	Bridge/	Router
	Repeater	Switch	
Traffic isolation	no	yes	yes
Plug and Play	yes	yes	no
Efficient routing	no	no	yes
Cut through	yes	yes	no

Conclusion

- Shuttling data from one link to another
 - -Bits, frames, packets, ...
 - -Repeaters/hubs, bridges/switches, routers, ...
- Key ideas in switches
 - Cut-through switching
 - Self learning of the switch table
 - Spanning trees
 - -Virtual LANs (VLANs)