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First order business

* Log into your account on
labpc-01.cs.princeton.edu

* Type: chmod —R 700 <cosé461>

* |f you don’t have a computer today, do this by
tonight. (We’ll be checking tomorrow.)



Goals of Today’s Class

Network-layer principles
— Globally unique identifiers and simple packet forwarding
— Middleboxes as a way to violate these principles

Network Address Translation (NAT)
— Multiple machines behind a single public address
— Private addresses behind the NAT box

Firewalls
— Discarding unwanted packets

LAN appliances
— Improving performance and security
— Using a middlebox at sending and receiving sites



Network-Layer Principles

e Globally unique identifiers
— Each node has a unique, fixed IP address

— ... reachable from everyone and everywhere

e Simple packet forwarding
— Network nodes simply forward packets
— ... rather than modifying or filtering them
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Internet Reality

Host mobility

— Changes in IP addresses as hosts move

IP address depletion

— Dynamic assignment of IP addresses

— Private addresses (10.0.0.0/8, 192.168.0.0/16, ...)
Security concerns

— Discarding suspicious or unwanted packets
— Detecting suspicious traffic

Performance concerns

— Controlling how link bandwidth is allocated
— Storing popular content near the clients



Middleboxes

* Middleboxes are intermediaries
— Interposed in-between the communicating hosts
— Often without knowledge of one or both parties

 Examples
— Network address translators
— Firewalls
— Traffic shapers
— Intrusion detection systems
— Transparent Web proxy caches

— Application accelerators



Two Views of Middleboxes

* An abomination
— Violation of layering
— Cause confusion in reasoning about the network
— Responsible for many subtle bugs

e A practical necessity
— Solving real and pressing problems
— Needs that are not likely to go away

* Would they arise in any edge-empowered
network, even if redesigned from scratch?



Network Address Translation



History of NATs

* |P address space depletion
— Clear in early 90s that 232 addresses not enough
— Work began on a successor to IPv4

* |[n the meantime...
— Share addresses among numerous devices
— ... without requiring changes to existing hosts

* Meant to provide temporary relief
— Intended as a short-term remedy

— Now, NAT are very widely deployed
— ... much moreso than IPv6 ©



Active Component in the Data Path
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IP Header Translators

Local network addresses not globally unique
— E.g., private IP addresses (in 10.0.0.0/8)

NAT box rewrites the IP addresses
— Make the “inside” look like a single IP address
— ... and change header checksums accordingly

Outbound traffic: from inside to outside
— Rewrite the source IP address

Inbound traffic: from outside to inside
— Rewrite the destination IP address



Using a Single Source Address
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What if Both Hosts Contact Same Site?

e Suppose hosts contact the same destination

— E.g., both hosts open a socket with local port 3345 to
destination 128.119.40.186 on port 80

* NAT gives packets same source address
— All packets have source address 138.76.29.7

* Problems
— Can destination differentiate between senders?
— Can return traffic get back to the correct hosts?



Port-Translating NAT

 Map outgoing packets
— Replace source address with NAT address
— Replace source port number with a new port number

— Remote hosts respond using (NAT address, new port #)
* Maintain a translation table

— Store map of (src addr, port #) to (NAT addr, new port #)
 Map incoming packets

— Consult the translation table

— Map the destination address and port number
— Local host receives the incoming packet



Network Address Translation Example

NAT translation table 1: host 10.0.0.1
2: NAT router WAN side addr LAN side addr sends datagram to

changes datagram | 138 76.29.7, 5001 | 10.0.0.1, 3345 128.119.40.186, 80
source addr from | o~ | _—

10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

5:138.76.29.7, 5001
D: 128.119.40.186, 80

5:10.0.0.1, 3345 ’
D: 128.119.40.186, 80

/

: =/ 10.0.0.1

1(0.0.0.4

138.76.29.7)' L/" S: 128.119.40.186, 80 _@
C" S: 128.119.40.186, 80 _@ 4 0:100.01, 3345
, D:138.76.29.7, 5001 4: NAT router
3: Reply arrives changes da’ragram
dest. address: dest addr from

138.76.29.7, 5001 138.76.29.7, 5001 10 10.0.0.1, 3345
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Maintaining the Mapping Table

Create an entry upon seeing a packet
— Packet with new (source addr, source port) pair

Eventually, need to delete the map entry
— But when to remove the binding?

If no packets arrive within a time window
— ... then delete the mapping to free up the port #s
— At risk of disrupting a temporarily idle connection

Yet another example of “soft state”
— |.e., removing state if not refreshed for a while



Where is NAT Implemented?

 Home router (e.g., Linksys box)
— Integrates router, DHCP server, NAT, etc.
— Use single IP address from the service provider
— ... and have a bunch of hosts hiding behind it

 Campus or corporate network
— NAT at the connection to the Internet
— Share a collection of public IP addresses

— Avoid complexity of renumbering end hosts and local
routers when changing service providers



Practical Objections Against NAT

* Port ##s are meant to identify sockets
— Yet, NAT uses them to identify end hosts

— Makes it hard to run a server behind a NAT

138.76.29.7 /
Requests to

- 138.76.29.7
on port 80

NAT \

10.0.0.2 Which host should get the request???
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Running Servers Behind NATs

Running servers is still possible
— Admittedly with a bit more difficulty
By explicit configuration of the NAT box

— E.g., internal service at <dst 138.76.29.7, dst-port 80>
— ... mapped to <dst 10.0.0.1, dst-port 80>

More challenging for P2P applications

— Especially if both peers are behind NAT boxes
Though solutions are possible here as well
— Existing work-arounds (e.g., in Skype)

— Ongoing work on “NAT traversal” techniques



Principled Objections Against NAT

* Routers are not supposed to look at port #s
— Network layer should care only about IP header
— ... and not be looking at the port numbers at all
* NAT violates the end-to-end argument
— Network nodes should not modify the packets
* |Pv6 is a cleaner solution
— Better to migrate than to limp along with a hack

That’s what you get when you design a network
that puts power in the hands of end users!



Firewalls



Firewalls

Isolates organization’s internal net from
larger Internet, allowing some packets to
pass, blocking others.

public
Internet

administered
network

<

firewall



Internet Attacks: Denial of Service

e Denial-of-service attacks
— QOutsider overwhelms the host with unsolicited traffic
— ... with the goal of preventing any useful work

 Example: attacks by botnets
— Bad guys take over a large collection of hosts
— ... and program these hosts to send traffic to your host
— Leading to excessive traffic

* Motivations for denial-of-service attacks
— Malice (e.g., just to be mean)
— Revenge (e.g., for some past perceived injustice)
— Greed (e.g., blackmailing)



Internet Attacks: Break-Ins

* Breaking in to a host
— QOutsider exploits a vulnerability in the end host
— ... with the goal of changing the behavior of the host

* Example
— Bad guys know a Web server has a buffer-overflow bug
— ... and, say, send an HTTP request with a long URL
— Allowing them to run their own code

 Motivations for break-ins
— Take over the machine to launch other attacks
— Steal information stored on the machine
— Modify/replace the content the site normally returns



Should arriving

packet be allowed
in? Departing packet
let out?

Packet

* |Internal network connected to Internet via firewall

* Firewall filters packet-by-packet, based on:
— Source IP address, destination IP address
— TCP/UDP source and destination port numbers
— ICMP message type
— TCP SYN and ACK bits



Packet Filtering Examples

* Block all packets with IP protocol field =17 and
with either source or dest port = 23.

— All incoming and outgoing UDP flows blocked
— All Telnet connections are blocked

e Block inbound TCP packets with SYN but no ACK

— Prevents external clients from making TCP
connections with internal clients

— But allows internal clients to connect to outside

* Block all packets with TCP port of Counterstrike



SNS @ Princeton Computer Science

United States | Counter Strike Source Server 4= View Counter Strike Source Server List

lb Server Info

@ SERVER SUMMARY ( Manage Game Server )

Game Server: SNS @ Princeton Computer Science

Game Type: Counter Strike Source

IP Address: 128.112.139.199 Port: 27015 Status: Alive
Added On: Feb 19, 2009 Owner: None (claim ownership)
Favorite: Login to add this to your favorite game servers.

Qrm

@ CLAN INFORMATION

No clan info is available. Are you the game server owner?
If so, click here to add your clan's information to this page!

@ SERVER RANKING

Game Server Rank:

9351st (20th Percentile) - Counter Strike Source Servers
Highest (past month): 9351st Lowest (past month): 10055th
Game Server Page Views: 29

@ SERVER BANNERS

24 seconds ago

@ CURRENT MAP

Upload a new onel!

Last Map: cs_havana

@ PLAYER STATS ( View All )

Current Players: 0/ 32
Average (past month): 2

SERVER NAME
/\ SNS @ Princeton Computer Science
|PRRDDRESS PORT SERVER STATUS
= 128112139199 27015  Online
f - X7 CURRENT MAP PLAYERS SERVER RANK
[CounTerfSTRKE ge prodigy 0/32  9351st (20th pctile)

# OF PLAYERS (past 24 hours]

0‘ GAMETRACKER

S www.gametracker.com

CouNTERASTRIKE

SOURCE

Free Voice Servers
Host COD5 Servers
Left 4 Dead Hosting
Cheap Ventrilo Hosting
Counter Strike Servers
Teamspeak Servers
Instant Game Servers
Download Ventrilo

[P Server Blog

There are no blogs for this server.

I View Server Blog s Add Blog Post

Historical Data



Firewall Configuration

* Firewall applies a set of rules to each packet
— To decide whether to permit or deny the packet

* Each rule is a test on the packet
— Comparing IP and TCP/UDP header fields
— ... and deciding whether to permit or deny

* Order matters
— Once the packet matches a rule, the decision is done



Firewall Configuration Example

e Alice runs a network in 222.22.0.0/16

— Wants to let Bob’s school access certain hosts
* Bobison 111.11.0.0/16
 Alice’s special hosts on 222.22.22.0/24

— Alice doesn’t trust Trudy, inside Bob’s network
* Trudyison 111.11.11.0/24

— Alice doesn’t want any other traffic from Internet

* Rules
— #1: Don’t let Trudy’s machines in
e Deny (src=111.11.11.0/24, dst =222.22.0.0/16)

— #2: Let rest of Bob’s network in to special dsts
* Permit (src=111.11.0.0/16, dst = 222.22.22.0/24)

— #3: Block the rest of the world
* Deny (src =0.0.0.0/0, dst =0.0.0.0/0)



A Variation: Traffic Management

* Permit vs. deny is too binary a decision
— Maybe better to classify the traffic based on rules
— ... and then handle the classes of traffic differently

* Traffic shaping (rate limiting)
— Limit the amount of bandwidth for certain traffic
— E.g., rate limit on Web or P2P traffic

* Separate queues
— Use rules to group related packets
— And then do round-robin scheduling across groups
— E.g., separate queue for each internal IP address



Firewall Implementation Challenges

* Per-packet handling
— Must inspect every packet
— Challenging on very high-speed links

 Complex filtering rules
— May have large # of rules
— May have very complicated rules

* Location of firewalls
— Complex firewalls near the edge, at low speed
— Simpler firewalls in the core, at higher speed



Clever Users Subvert Firewalls

* Example: filtering dorm access to a server
— Firewall rule based on IP addresses of dorms

— ... and the server IP address and port number

— Problem: users may log in to another machine
* E.g., connect from the dorms to another host
... and then onward to the blocked server

* Example: filtering P2P based on port #s
— Firewall rule based on TCP/UDP port numbers
e E.g., allow only port 80 (e.g., Web) traffic

— Problem: software using non-traditional ports
* E.g., write P2P client to use port 80 instead



LAN Appliances

aka WAN Accelerators
aka Application Accelerators



At Connection Point to the Internet
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Appliance Appliance

* Improve performance between edge networks
— E.g., multiple sites of the same company

— Through buffering, compression, caching, ...

* Incrementally deployable
— No changes to the end hosts or the rest of the Internet
— Inspects the packets as they go by, and takes action



Example: Improve TCP Throughput

Appliance Appliance

Appliance with a lot of local memory

Sends ACK packets quickly to the sender
Overwrites receive window with a large value
Or, even run a new and improved version of TCP
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Example: Compression

o0

Appliance Appliance

 Compress the packet

* Send the compressed packet

* Uncompress at the other end

* Maybe compress across successive packets
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Example: Caching
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Appliance Appliance

* Cache copies of the outgoing packets

* Check for sequences of bytes that match past data
e Just send a pointer to the past data

 And have the receiving appliance reconstruct
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Example: Encryption
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Appliance Appliance

Two sites share keys for encrypting traffic
Sending appliance encrypts the data
Receiving appliance decrypts the data

Protects the sites from snoopers on the Internet
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Conclusions

 Middleboxes address important problems
— Getting by with fewer IP addresses
— Blocking unwanted traffic
— Making fair use of network resources
— Improving end-to-end performance

 Middleboxes cause problems of their own

— No longer globally unique IP addresses

— No longer can assume network simply delivers packets
* Next class

— Repeaters/hubs and bridges/switches
— Reading: Section 3.2



