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1.  FIFO(Round-Robin) Version 
 
In this version of the algorithm, we maintain a queue of all the active vertices (those with 
positive excess).  We pop the first vertex off of the queue and discharge it by applying 
pushing and relabeling steps to it until its excess is reduced to zero.  If a push makes a 
vertex active, we inject it into the back of the queue. 
 
The running time of this method is O( )nm plus O(1) per nonsaturating push, since the 
time for queue operations is O(1) per push.  (The time for the 2O( )n  relabelings is 
O( ),nm  the number of saturating pushes and the time they take is O( ),nm  the time per 
nonsaturating push is O(1),  and the time spent finding edges on which to do pushes is 
O( )nm plus O(1) per nonsaturating push.)  We shall bound the number of nonsaturating 
pushes, and hence the total running time, by 3O( ).n  To do this, we define passes through 
the queue as follows.  Pass one consists of the discharges done on vertices initially on the 
queue (once the arcs out of s  are saturated).  Pass 1k + consists of the discharges done on 
vertices added to the queue during pass .k  During each pass, there is at most one 
discharge per vertex, and thus at most one nonsaturating push per vertex, since such a 
push reduces the vertex excess to zero.  We shall derive an 2O( )n bound on the number 
of passes, giving the desired 3O( )n bound on the number of nonsaturating pushes.  Since 
there are 2O( )n  relabelings, there are 2O( )n  passes that do at least one relabeling.  To 
bound the number of passes that do not do a relabeling, let Φ  be max{ ( ) ( ) 0}.d v e v >  Φ  
is always at least zero and at most 2n2.  A pass that does not do a relabeling decreases Φ  
by at least one.  The total increase in Φ  over all passes is at most the total label increase, 
which is at most 2n2.  Hence the number of passes that do not do a relabeling is 2O( )n .  
Hence the total number of passes is 2O( )n . 
 
2. Big-Excess Version(assuming integer arc capacities) 
 
In this version of the algorithm, we maintain a parameter Vthat is an upper bound on the 
maximum excess.  Initially V is the initial maximum excess, equal to the maximum of 
the capacities of the arcs leaving the source, say U.  Pushes are only done on vertices 
with excess exceeding / 2.V  We call such vertices big.  Once there are no big vertices, V 
is divided by 2 and rounded down to the nearest integer, and pushing continues.  Once V 
is less than one, all excesses must be zero, since the algorithm maintains flow integrality.  
In order to guarantee that the algorithm always makes forward progress, we must modify 
the pushing step so that it never creates a vertex excess exceeding .V   In particular, when 
pushing from v  to ,w  the amount of flow moved is min{e(v), cf (v,w), V – e(w)}. 
 



We still need a way to select big vertices for processing.  A good method is to select a big 
vertex of minimum label.  With this method, any nonsaturating push moves at least / 2V  
units of flow.  Consider the potential function Φ  = Σ (e(v)d(v) / (2V)).  This potential is 
initially zero, always non-negative, and at most 24 .n   Any push reduces the potential, a 
nonsaturating push reduces it by at least one, and the only increases in potential are due 
to relabelings, which cause a total increase of 2O( ),n  and changes in ,V  each of which 
can cause an increase in Φ  by up to 22n (from 22n to 24 ).n  Thus the total number of 
nonsaturating pushes is 2O( log U),n and the total running time is 2O( log U ),n nm+  
assuming that the overhead to select big vertices for processing is not too large. 
 
Exercise: Describe a way to implement big vertex selection within the claimed time 
bound.      
 
 


