COS 423 Notes omidtium Spanning Trees
Spring 2009

1. The Generic Greedy Algorithm

Thegeneric greedy algorithrfinds a minimum spanning tree (MST) by an edgeiiog
process. Initially all edges are uncolored. Tlyerthm colors edges blue (accepted) or
red (rejected) one-at-a-time by repeatedly applyitger of the following two coloring
rules, in any order:

Blue Rule: Given a cut that no blue edges crostecs@ minimum uncolored edge
crossing the cut, and color it blue. ¢Atis a partition of the vertices into two non-empty
parts; an edgerosseshe cut if it has one end in each part.)

Red Rule: Given a cycle containing no red edgdscsa maximum uncolored edge on
the cycle, and color it red.

Termination: As long as at least one edge is umedlcssome edge can be colored by one
of the rules. That is, the algorithm eventuallyoee all the edges, no matter in what
order it applies the rules.

Proof: Suppose some edde w is uncolored. Let X be the set of vertices reathab

from v by traversing only blue edges, and Jetbe the remaining vertices. W is in X,
then {v, w is on a cycle all of whose other edges are blud, the red rule applies to
color {v, W red. Otherwise, XX is a cut that {v, w} but no blue edges cross. Jthe
blue rule applies to coldw, w or some other edge blue. QED

Correctness: The algorithm maintains the invartaat some MST T contains all of the
blue edges and none of the red ones.

Proof: By induction on the number of edges colorékhe invariant is vacuously true
initially, since no edges are colored and any M&fisBes the invariant. Suppose the
invariant holds for an MST T before an applicatioh the blue rule that colors a

minimum edge{v, W crossing a cut XX. If {y, W} is in T, the invariant holds for T
after{v, w is colored. Otherwise, consider the cycle forragddding{v, w to T. This
cycle contains at least one edfpe y} in T crossing X,X. (It may contain several.)
Edge{x ¥} must be uncolored since it crosses the cut, bastcost at least as large as
{v, w. But adding{v, w to T and deletindx } forms a new spanning tree T', which

has cost no more than that of T. Since T is mimmd' must also be minimum (and
{v W and{x y} must have the same cost). Tree T' satisfies thariamt after{v, w is

colored.

Suppose the invariant holds for an MST T beforegpiication of the red rule that colors
a maximum edde;, w on a cycle C. Ifv w is notin T, the invariant holds for T after

{v w is colored. Otherwise, deletiy, W from T produces two trees. At least one
edge{x y of C other tha{v, w must have exactly one end in each of these triedge
{x y} cannot be blue because it is not in T, and it cabe red since C contains no red
edges, so it must be uncolored. Since the redapées to colo{v, w, {v W has cost
no less than that dfx y}. But deleting{v, w from T and addindgx y} forms a new tree
T. Since T is an MST, T' must also be an MST fwad} and{x y} must have equal
cost. Tree T' satisfies the invariant aferw} is colored. QED

The invariant implies that once all edges are @uldor even once the blue edges form a
single tree), the blue edges form an MST. Thefpatsw implies that if all edge costs are
distinct, there is a unique MST. (Why?)

2. Three Classical Algorithms

The generalized greedy algorithm is highly non-deteistic in that the coloring rules
can be applied in any order. There are three icEs$ST algorithms that are
specializations of the generic algorithm, two adrthwell-known and one much less so.
In describing these algorithms, | shall use thentéblue tree” to refer to any of the
maximal trees defined by the blue edges. (By tivariant, the blue edges can never
contain a cycle.) Initially there ane one-vertex blue trees. Each time an edge isedlor
blue, two blue trees are combined into one, uffiidfran—1 edges are colored blue, there
is only one blue tree, which is an MST.

2.1. Kruskal's Algorithm

Kruskal's algorithm (1956) is globally greedy: exaeithe edges in non-decreasing order
by cost. When examining an ed@e w, color it blue if its ends are in different blue
trees and red otherwise. (Prove that this algoritana specialization of the generic
algorithm.)

To implement Kruskal's algorithm efficiently, we atk two things: a mechanism for
selecting edges in non-decreasing order by codtaamay to keep track of the vertex sets
of the blue trees. The latter is an instance efdisjoint set union problem, and the
compressed-tree data structure solves it. Theratanost two finds per edge and exactly
n-1 links, for a total time ofO(ma (m n). To select edges in non-decreasing order by

cost, we can either sort the edges by cost or lsmp. If we use a binary-comparison-
based method, the time bound for selecting edgédevO(mlogm)= O(mlog n) Using

sorting has the advantage that the constant facsmmall; using a heap has the advantage
that on a dense graph we may have to delete osigadl fraction of the edges from the
heap before the MST is completed, resulting in ranimg time smaller than the worst-
case bound. One intriguing possibility is to userecremental version of quicksort that
only does work as needed to determine the next tmlgeocess. Such a method has a
low constant factor and takes advantage of eamyptetion of the MST. The bottleneck
in Kruskal's algorithm is the time to order the eslgunless the edges are given in sorted

order or can be sorted fast, for example by usidixrsorting. Then the bottleneck is the
set maintenance, and the overall running tim@ (s (m, n)). rather thanO(mlogn).

2.2. The Algorithm of Jarnik, Prim, and Dijkstra

The other well-known classical algorithm is gengrairedited to Prim (1957) and
Dijkstra (1959) independently, but was actuallycdigered by Jarnik (1930). The JPD
algorithm is a single-source version of the genalgorithm: it grows a single blue tree
from a fixed starting vertes (thesourcg. The general step, repeatedl times, is to
find a minimum-cost edge with exactly one end ia fue tree containing and color it
blue. (Prove that this algorithm is a specializatiof the generic algorithm.) This
algorithm can be implemented just like Dijkstralsgée-source shortest-path algorithm;
indeed, he presented both algorithms in the sarperpaWe maintain a set of labeled
vertices, which are those adjacent to some vertéke blue tree containing The key
of a labeled vertex is the cost of a minimum edwyanecting it to a vertex in the blue tree
containings. We initialize the set of labeled vertices to hese adjacent t®, with

appropriate keys. The general step is to choodealed vertexv of minimum key,
color blue a minimum edge connecting it to the lthee containings, and examine each

edge{v, w: if w is not labeled and not in the blue tree contairspngark it labeled and
set its key equal to the costfof w; if w is labeled and has key greater than the cost of
{v, w, set its key equal to the cost f w. If we use a Fibonacci heap or a rank-

pairing heap to store the set of labeled vertidks, total running time of Kruskal's
algorithm isO(nlogn+ m), because there are-1 insert andn—1 delete min operations

and at most m decrease-key operations.
2.3 Boruvka's Algorithm

Boruvka's algorithm (1926) is a concurrent versibthe generic algorithm. It proceeds
in passes. A pass consists of selecting, for baahtree, a minimum edge with exactly
one end in the blue tree, and concurrently coloahghe selected edges blue. An edge
can be selected twice, once for the blue tree ountaeach end. This "algorithm" is
actually not correct if edge costs can be equale(gi counterexample), but if the edge
costs are distinct, or are made distinct by usitig-areaking rule (such as numbering all
the edges and breaking ties by edge number), theuvBa's algorithm can be serialized
into a specialization of the generic algorithmroffe this.)

One nice feature of Boruvka's algorithm is thatisitsimple to build an efficient
implementation. A pass of Boruvka's algorithm dan performed inO(m)time as
follows: using graph search, find the vertex setghe blue trees. For each edge,
determine the blue trees of its endpoints. Makass through the edges, keeping track
for each blue tree of a minimum edge with exactig end in the tree. We can actually
implement the algorithm using a disjoint set ddtacsure, without graph search, so that
each pass takeS(m)time via a single pass through the edges (doirdgjirfollowed by

a pass over the edges to be colored blue (doikg)linfProve this.)

One can easily prove by induction that, after plassf Boruvka's algorithm, each blue

tree contains at lea?* vertices (prove this), which implies that Borukalgorithm
stops after at modg n passes and runs @(mlog n)time at O(m) time per pass.

By doing some additional work during each passcifipally by applying the red rule to
reject edges, one can improve the running timeasti&ka's algorithm on certain kinds of
graphs. During a pass, we reject all edges bothhofse ends are in the same blue tree,
and also all but one edge, an edge of minimum g¢osting each pair of blue trees.
Rejecting the edges with both ends in the same trkes is an easy extension of the
method described above for doing a pass. To rajebut a minimum-cost edge between
each pair of blue trees, we label each edge wélbthe trees containing its ends, sort the
edges lexicographically by their labels (via a tpass radix sort, which take3(m) time

because we can make the labels integers betwerd f)aand scan the edges in label-

sorted order, keeping only a minimum edge in eaobhgwith equal labels. This sweep
amounts to contracting each blue tree to a singteex and deleting loops and multiple
edges. We call this algorithiBoruvka's algorithm with cleanup On general graphs,

Boruvka's algorithm with cleanup runs @(n’)time, because after thé pass at most

(n/2)?edges remain. On families of sparse graphs closeér contraction, such as
planar graphs, Boruvka's algorithm with cleanupsrimO(m) = O(n)time. (Prove this

for planar graphs.)

3. Faster Algorithms

The three classical algorithms described in the dastion leave open the question of
whether there is a sorting bottleneck in the mimmgpanning tree problem; that is, can
one beatO(mlog n)on sparse (as opposed to dense) graphs, or mightdd®putation

take Q(nlog n)time, if only binary comparisons between edge wesigine allowed? The
answer is no: by combining two ideas from the pasisection, we can do better. In
particular, suppose we rurglgn passes of Boruvka's algorithm, which takes
O(mloglogn)time, and then do a cleanup. This reduces the auwmibblue trees to at
most n/lgn. If we now choose one of these blue trees as eca@and run the JPD
algorithm, treating each blue tree as a singleexethen there will only b@/Ig n delete-
min operations, and if we use a Fibonacci heaok-pairing heap the running time of
this second part of the algorithm will b@(m), resulting in an overall time bound of

O(mloglogn)).
3.1 Yao's Algorithm

An O(mloglogn) bound was actually obtained by Andy Yao before itheention of
Fibonacci heaps, by adding to Boruvka's algoritheingpler idea than Fibonacci heaps
that | shall callpackets.In order to select minimum edges incident to kiees, we
maintain a two-level data structure containing éach blue tree its incident uncolored
edges. These edges are partitioned paokets each of which contains at mokgn

edges. Aull packetstarts out containing exactlgn edges. In each packet we sort the
edges by cost. |Initially we arbitrarily partitidhe edges incident to each vertex into
packets, at most one non-full packet per vertes, sort the edges in each packet. Each
edge is initially in exactly two packets, one fachk of its ends. To perform a Boruvka
step, for each blue tree we examine each of itkgiagn turn. For a particular packet,
we remove edges in order until finding one that &aend in another blue tree, or until
the packet is empty. Once we have found a minirfameach packet, or emptied it, we
compare the packet minima, and select a minimum aVéhe packets. Having done this
for all the blue trees, we color all the selecteldjes blue, deleting them from their
packets, and combine the sets of packets of bb#s tthat are connected together. If the
set of packets for a blue tree is representedasaar list, then combining the sets of
packets of newly connected blue trees taRégtime per new blue edge.

To keep track of the vertex sets of the blue tregsyuse a disjoint set data structure as in
Kruskal's algorithm; the time needed for set openatis asymptotically less than that
required for sorting. Ignoring the time for the sgierations, the time for one pass of
Boruvka's algorithm i90(1) per packet. If all the packets were full, thiseginvould be

O(m/logn),summing to O(m)time overall. The time to sort the packets, whish
O(mloglogn) would dominate the running time.

This idea almost works, the catch being that tlvare be one non-full packet per vertex
initially, and if these packets are not at somenpoombined into full packets, then the
overall time to process non-full packets might ®énlogn). (But even so we get an

overall bound ofO(nlogn+ mloglog n), better than Kruskal's algorithm and better than

Boruvka's algorithm with cleanup.) We can hantise by breaking the computation into
two parts, as in the fast-heap-based method descabove: we run Boruvka's algorithm
with the initial packets fotoglogn passes. Then we reinitialize the packets, respuiti

at mostn/logn non-full packets, and run the algorithm to coniplet The result is an
algorithm running inO(mloglogn)time. (Prove this.)

3.2. Faster Algorithms Using Fast Heaps, PackatsCiher Ideas

Thus we have two different ways to obtain@{mloglogn)time bound. One might well
suspect that if we can obtain &(mloglogn)bound without using fast heaps, then one

might be able to do even better using fast hedpst is, the hybrid method described in
the introduction might not be best possible. Thisue: one can implement a generalized

form of Boruvka's algorithm using fast heaps thas fa time bound oD(mlog n).
Furthermore the idea of packets is independertiaifdf fast heaps and can be combined
with it to yield a further improvement, t@(mloglog n)time. Even this has been

improved: Chazelle, in a tour-de-force, using a eap structure calledsaft heapthat
is allowed to make errors (but only in a controlle@dy) obtained a deterministic
O(ma (m, n) - timealgorithm. Furthermore, by using additional idehgs algorithm can

be modified to run in minimum time to within a cterst factor, though no one at present

can say what the asymptotic bound is: it might®gn), it might be O(ma(m, n)), it
might be something in between. How is this possipbu ask? The secret is to build (by
brute-force search) an optimum algorithm for venya problem sizes, and use this
optimum algorithm in a rapidly-unwinding divide-aodnquer recurrence (which gets
down to very small sub-problems in a constant numiferecursive calls). These
algorithms are all "beyond the scope of this catrsBut I'll offer one idea to think
about: consider a version of the simple two-pagerdhm described at the beginning of
this section in which we run Boruvka passes, usitigst heap for each blue tree to store
incident uncolored edges. Coloring an edge blgeires melding two such heaps. We
run Boruvka passes until some appropriate stoppiitgrion holds, then do a cleanup,
and then finish the computation using the JPD dlgor as at the beginning of the
section. What can you say about the running timsuch an algorithm, especially as
applied to graphs of large girth? Toieth of a graph is the length of the shortest simple
cycle.

3.3. A Randomized Linear-Time Algorithm

The holy grail for the MST problem is to find adar-time algorithm. This has been
done, with a caveat: the algorithm uses random Bagahe algorithm is quite simple,
if one sweeps under the rug the details of ong@rpart of the algorithm.

How might one find an MST in linear time? We knfram the discussion in Section 2.3
that one pass of Boruvka's algorithm with cleanulp reduce the number of blue trees,
effectively the number of vertices, by at leasaetdr of two. If we had a corresponding
way, for a sufficiently dense graph, to reducertbmber of edges by a constant factor in
linear time, we would be able to find an MST inglam time by appropriately intermixing
these steps: if the graph is spafse< cn for some appropriate constacjt do a Boruvka

step; otherwise, do an edge-thinning step. (Whyldvdhis result in a linear-time
algorithm?)

The missing part is thus an edge-thinning methBdr this we use a generalization of
MST verification. Suppose we are given a tree @ asked to determine whether it is an
MST. The red rule implies that T is an MST if aodly if, for every non-tree edge
{v, W, {v W is maximum on the cycle formed by addifygw} to T. More generally, if T
is anytree, or even any forest, we can apply the reeltawkeject any edge {v, w} not in
T if it forms a cycle with edges in T and it is ntaxm on this cycle. This gives us a
way to do thinning, but for this method to rejectoa of edges (we want to reject a
constant fraction), we must start with a good tf@eforest), perhaps not an MST but
something good enough.

To find a good forest, we combine random samplintp wecursion. Specifically, the
edge-thinning step is as follows. Select a randample of the edges by flipping a fair
coin (one whose probably of coming up heads ishai® once for each edge and putting
the edge in the sample if the coin comes up heéilise expected size of the sample will
be half the total number of edges.) Next, findiaimum spanning forest F of the sample
by applying the whole algorithm recursively(!). @Bample may not define a connected

subgraph, so we may not get a spanning tree oltioée graph, only a spanning tree of
each connected component of the sample.) Rejg¢héored rule) all the sampled edges
not in F. Test every edge not in the sample ag&nand reject it if it forms a cycle with
edges in F and it is maximum on the cycle.

Now we have all the pieces (except for an efficay to test edges not in the sample
against F, which | shall discuss later). The oNexigorithm, which we present as an
algorithm to find a minimum spanning forest (oneetper connected component) of a
not-necessarily connected graph, consists of remeahe appropriate one of the
following cases until no edges remain, and themrngtg the set of edges colored blue by
Boruvka steps: if the graph contains fewer tleanedges, whera is the number of blue
trees, do a Boruvka step; otherwise, sample thelarexl edges, compute an MSF F for
the sample and the blue edges by applying theeealyorithm recursively, and thin the
graph using F and the red rule to reject every edgen F that forms a cycle with F and
is maximum on the cycle.

Thinning Efficiency: The expected number of edgesrejected by a thinning step is at
most 2n. That is, the expected number of edges left aftdninning step is at mogn.
(Thus for example ifc=4 then thinning will on the average discard at |dasf the
edges.)

Proof: We use Kruskal's algorithm, but for purposgshe analysis only. Consider the
following process for doing the sampling, buildiRgand rejecting edges: sort the edges
in non-decreasing order by cost. Process the ebtgesder. To process an edge
{v, w, flip the coin, resulting in H or T. fv, w connects two vertices in the same blue

tree, reject it (color it red). Otherwise, if theim is H, color the edge blue: it is in the
sample and it belongs in F. Otherwise, leave thengraph: it is not in the sample and it
cannot be rejected. This process gives exactlgahnge forest F and exactly the same set
of rejected edges as the algorithm. (Why?) Butceothat if an edge is rejected, the
outcome of the coin flip is irrelevant! Thus wencmodify the procedure, without
affecting its behavior, so that it first tests alye to see if it forms a cycle and only flips
the coin if it does not. Now the edges that arterejected are exactly those for which the
coin is flipped. Each time the coin is flipped, ldnesults in the addition of an edge to F.
But F can contain at mosh—-1 edges. Thus the sequence of non-thinned edges
corresponds exactly to a sequence of coin flipgatoimg at mostn—-1 heads. What is
the expected length of such a sequence? It isoat 8m. (Prove this; it follows from
very basic results in discrete probability.) QED

We still need a way to do the thinning. This pasblis solvable by an extension of path
compression: union by rank or size cannot be usedsamething more complicated is
needed. This approach results in a time bounthfoning of O(ma (m, n)). This bound
can be improved t@®(m) by adding the idea of building an optimum algoritfon very
small problem sizes. | omit the details of thetas (at least here).

Now we derive a linear time bound on the runnimgetiof the randomized algorithm,
assuming that thinning takes linear time. We dtiagéebound in terms of the number of

edgesm of the problem graph; once a vertex becomes ewl@hcident to no edges), we
just delete it. The algorithm is as follows: ietlgraph has at mosin blue trees (for
some constant whose value we shall choose), do a Boruvka stetuding a cleanup.
Assume this takes at moatn time for some appropriate constamtOtherwise, sample
the uncolored edges, find an MSF of the sample thesblue trees by applying the
algorithm recursively, and do thinning. Assumd tenerating the sample and doing the
thinning takes at mogbm time. In either case, apply the algorithm remetsi to the
remaining graph. A Boruvka step colors at lea$R > m/(2c)edges blue and deletes
them (via the cleanup). A thinning step colors red the average at least
m-2n= m-2n/ & nfl- 2/ gedges and deletes them. There is one recursivd eal
Boruvka step is performed, on a graph containingn@st m(1-1/(2c))edges. There are

two recursive calls if a thinning step is performed the sample graph and on the graph
remaining after the thinning. Together these twapgs have on the average at most
m/2+2m/c= m1/2+ 2/ ¢ edges. As long as we choose 4, the recursive calls in

either case are on graphs with at m@dste)m edges fore=min{l/(2c),1/2- 2/c}>0,
and we will get a linear time bound.

To get such a bound, we charge the work done &t stap to the decrease in the number
of edges. We do this by giving a graph withuncolored edges a potential kin, for a

suitably largek. Let us see whak needs to be. A Boruvka step reduces the potdmntial
at leastm/ 2¢, which must be enough to pay for the am time sganng the step. That

is, we needk = 2ac. A sampling and thinning step on the average resltive potential
by at leastkm(1/2- 2/c)(the rest of the potential is needed for the twib-groblems),

which must pay for thdom time spent during the step. Thus we néeel2bc/(c-4).
Choosingc to make these constraints equal gieesb/ a+4;minimizing k then gives
k =8a+ 2h.

This result leaves open a number of interestingties. A minor one is exactly how to

put the several pieces of the algorithm togethéhénbest way to give the best constant
factor or the simplest algorithm. The most conaikd part of the algorithm is the piece
| have not described, the thinning test. It wolbnice to have a simpler solution for

this; perhaps randomization would help. Finally,there a deterministic linear-time

algorithm?

