
COS 423 Notes on Minimum Spanning Trees
Spring 2009

1. The Generic Greedy Algorithm

The generic greedy algorithm finds a minimum spanning tree (MST) by an edge-coloring
process. Initially all edges are uncolored. The algorithm colors edges blue (accepted) or
red (rejected) one-at-a-time by repeatedly applying either of the following two coloring
rules, in any order:

Blue Rule: Given a cut that no blue edges cross, select a minimum uncolored edge
crossing the cut, and color it blue. (A cut is a partition of the vertices into two non-empty
parts; an edge crosses the cut if it has one end in each part.)

Red Rule: Given a cycle containing no red edges, select a maximum uncolored edge on
the cycle, and color it red.

Termination: As long as at least one edge is uncolored, some edge can be colored by one
of the rules. That is, the algorithm eventually colors all the edges, no matter in what
order it applies the rules.

Proof: Suppose some edge { , }v w is uncolored. Let X be the set of vertices reachable

from v by traversing only blue edges, and let X be the remaining vertices. If w is in X,
then { , }v w is on a cycle all of whose other edges are blue, and the red rule applies to

color { , }v w red. Otherwise, X, X is a cut that {v, w} but no blue edges cross. Thus the
blue rule applies to color { , }v w or some other edge blue. QED

Correctness: The algorithm maintains the invariant that some MST T contains all of the
blue edges and none of the red ones.

Proof: By induction on the number of edges colored. The invariant is vacuously true
initially, since no edges are colored and any MST satisfies the invariant. Suppose the
invariant holds for an MST T before an application of the blue rule that colors a
minimum edge { , }v w crossing a cut X, X. If { , }v w is in T, the invariant holds for T
after { , }v w is colored. Otherwise, consider the cycle formed by adding { , }v w to T. This

cycle contains at least one edge { , }x y in T crossing X, X. (It may contain several.)
Edge { , }x y must be uncolored since it crosses the cut, so it has cost at least as large as
{ , }.v w But adding { , }v w to T and deleting { , }x y forms a new spanning tree T', which
has cost no more than that of T. Since T is minimum, T' must also be minimum (and
{ , }v w and { , }x y must have the same cost). Tree T' satisfies the invariant after { , }v w is
colored.

Suppose the invariant holds for an MST T before an application of the red rule that colors
a maximum edge{ , }v w on a cycle C. If { , }v w is not in T, the invariant holds for T after

{ , }v w is colored. Otherwise, deleting { , }v w from T produces two trees. At least one
edge { , }x y of C other than { , }v w must have exactly one end in each of these trees. Edge
{ , }x y cannot be blue because it is not in T, and it cannot be red since C contains no red
edges, so it must be uncolored. Since the red rule applies to color { , },v w { , }v w has cost
no less than that of { , }.x y But deleting { , }v w from T and adding { , }x y forms a new tree
T'. Since T is an MST, T' must also be an MST and { , }v w and { , }x y must have equal
cost. Tree T' satisfies the invariant after { , }v w is colored. QED

The invariant implies that once all edges are colored (or even once the blue edges form a
single tree), the blue edges form an MST. The proof also implies that if all edge costs are
distinct, there is a unique MST. (Why?)

2. Three Classical Algorithms

The generalized greedy algorithm is highly non-deterministic in that the coloring rules
can be applied in any order. There are three classical MST algorithms that are
specializations of the generic algorithm, two of them well-known and one much less so.
In describing these algorithms, I shall use the term “blue tree” to refer to any of the
maximal trees defined by the blue edges. (By the invariant, the blue edges can never
contain a cycle.) Initially there are n one-vertex blue trees. Each time an edge is colored
blue, two blue trees are combined into one, until after 1n− edges are colored blue, there
is only one blue tree, which is an MST.

2.1. Kruskal's Algorithm

Kruskal's algorithm (1956) is globally greedy: examine the edges in non-decreasing order
by cost. When examining an edge { , },v w color it blue if its ends are in different blue
trees and red otherwise. (Prove that this algorithm is a specialization of the generic
algorithm.)

To implement Kruskal's algorithm efficiently, we need two things: a mechanism for
selecting edges in non-decreasing order by cost, and a way to keep track of the vertex sets
of the blue trees. The latter is an instance of the disjoint set union problem, and the
compressed-tree data structure solves it. There are at most two finds per edge and exactly

1n− links, for a total time of O((,)).m m nα To select edges in non-decreasing order by
cost, we can either sort the edges by cost or use a heap. If we use a binary-comparison-
based method, the time bound for selecting edges will be O(log) O(log).m m m n= Using
sorting has the advantage that the constant factor is small; using a heap has the advantage
that on a dense graph we may have to delete only a small fraction of the edges from the
heap before the MST is completed, resulting in a running time smaller than the worst-
case bound. One intriguing possibility is to use an incremental version of quicksort that
only does work as needed to determine the next edge to process. Such a method has a
low constant factor and takes advantage of early completion of the MST. The bottleneck
in Kruskal's algorithm is the time to order the edges, unless the edges are given in sorted

order or can be sorted fast, for example by using radix sorting. Then the bottleneck is the
set maintenance, and the overall running time is O((,)).m m nα rather than O(log).m n

2.2. The Algorithm of Jarník, Prim, and Dijkstra

The other well-known classical algorithm is generally credited to Prim (1957) and
Dijkstra (1959) independently, but was actually discovered by Jarník (1930). The JPD
algorithm is a single-source version of the generic algorithm: it grows a single blue tree
from a fixed starting vertex s (the source). The general step, repeated 1n− times, is to
find a minimum-cost edge with exactly one end in the blue tree containing s and color it
blue. (Prove that this algorithm is a specialization of the generic algorithm.) This
algorithm can be implemented just like Dijkstra's single-source shortest-path algorithm;
indeed, he presented both algorithms in the same paper. We maintain a set of labeled
vertices, which are those adjacent to some vertex in the blue tree containing .s The key
of a labeled vertex is the cost of a minimum edge connecting it to a vertex in the blue tree
containing .s We initialize the set of labeled vertices to be those adjacent to ,s with
appropriate keys. The general step is to choose a labeled vertex v of minimum key,
color blue a minimum edge connecting it to the blue tree containing ,s and examine each
edge { , }:v w if w is not labeled and not in the blue tree containing ,s mark it labeled and
set its key equal to the cost of { , };v w if w is labeled and has key greater than the cost of
{ , },v w set its key equal to the cost of { , }.v w If we use a Fibonacci heap or a rank-
pairing heap to store the set of labeled vertices, the total running time of Kruskal's
algorithm is O(log),n n m+ because there are 1n− insert and 1n− delete min operations
and at most m decrease-key operations.

2.3 Boruvka's Algorithm

Boruvka's algorithm (1926) is a concurrent version of the generic algorithm. It proceeds
in passes. A pass consists of selecting, for each blue tree, a minimum edge with exactly
one end in the blue tree, and concurrently coloring all the selected edges blue. An edge
can be selected twice, once for the blue tree containing each end. This "algorithm" is
actually not correct if edge costs can be equal (give a counterexample), but if the edge
costs are distinct, or are made distinct by using a tie-breaking rule (such as numbering all
the edges and breaking ties by edge number), then Boruvka's algorithm can be serialized
into a specialization of the generic algorithm. (Prove this.)

One nice feature of Boruvka's algorithm is that it is simple to build an efficient
implementation. A pass of Boruvka's algorithm can be performed in O()m time as
follows: using graph search, find the vertex sets of the blue trees. For each edge,
determine the blue trees of its endpoints. Make a pass through the edges, keeping track
for each blue tree of a minimum edge with exactly one end in the tree. We can actually
implement the algorithm using a disjoint set data structure, without graph search, so that
each pass takes O()m time via a single pass through the edges (doing finds), followed by
a pass over the edges to be colored blue (doing links). (Prove this.)

One can easily prove by induction that, after pass k of Boruvka's algorithm, each blue
tree contains at least 2k vertices (prove this), which implies that Boruvka's algorithm
stops after at most lg n passes and runs in O(log)m n time at O()m time per pass.

By doing some additional work during each pass, specifically by applying the red rule to
reject edges, one can improve the running time of Boruvka's algorithm on certain kinds of
graphs. During a pass, we reject all edges both of whose ends are in the same blue tree,
and also all but one edge, an edge of minimum cost, joining each pair of blue trees.
Rejecting the edges with both ends in the same blue tree is an easy extension of the
method described above for doing a pass. To reject all but a minimum-cost edge between
each pair of blue trees, we label each edge with the blue trees containing its ends, sort the
edges lexicographically by their labels (via a two-pass radix sort, which takes O()m time
because we can make the labels integers between 1 and),n and scan the edges in label-
sorted order, keeping only a minimum edge in each group with equal labels. This sweep
amounts to contracting each blue tree to a single vertex and deleting loops and multiple
edges. We call this algorithm Boruvka's algorithm with cleanup. On general graphs,
Boruvka's algorithm with cleanup runs in 2O()n time, because after the thi pass at most

2(/ 2)in edges remain. On families of sparse graphs closed under contraction, such as
planar graphs, Boruvka's algorithm with cleanup runs in O() O()m n= time. (Prove this
for planar graphs.)

3. Faster Algorithms

The three classical algorithms described in the last section leave open the question of
whether there is a sorting bottleneck in the minimum spanning tree problem; that is, can
one beat O(log)m n on sparse (as opposed to dense) graphs, or might MST computation
take (log)n nΩ time, if only binary comparisons between edge weights are allowed? The
answer is no: by combining two ideas from the previous section, we can do better. In
particular, suppose we run lg lg n passes of Boruvka's algorithm, which takes
O(log log)m n time, and then do a cleanup. This reduces the number of blue trees to at
most / lg .n n If we now choose one of these blue trees as a source and run the JPD
algorithm, treating each blue tree as a single vertex, then there will only be / lgn n delete-
min operations, and if we use a Fibonacci heap or rank-pairing heap the running time of
this second part of the algorithm will be O(),m resulting in an overall time bound of
O(log log)).m n

3.1 Yao's Algorithm

An O(log log)m n bound was actually obtained by Andy Yao before the invention of
Fibonacci heaps, by adding to Boruvka's algorithm a simpler idea than Fibonacci heaps
that I shall call packets. In order to select minimum edges incident to blue trees, we
maintain a two-level data structure containing for each blue tree its incident uncolored
edges. These edges are partitioned into packets, each of which contains at most lg n

edges. A full packet starts out containing exactly lg n edges. In each packet we sort the
edges by cost. Initially we arbitrarily partition the edges incident to each vertex into
packets, at most one non-full packet per vertex, and sort the edges in each packet. Each
edge is initially in exactly two packets, one for each of its ends. To perform a Boruvka
step, for each blue tree we examine each of its packets in turn. For a particular packet,
we remove edges in order until finding one that has an end in another blue tree, or until
the packet is empty. Once we have found a minimum for each packet, or emptied it, we
compare the packet minima, and select a minimum over all the packets. Having done this
for all the blue trees, we color all the selected edges blue, deleting them from their
packets, and combine the sets of packets of blue trees that are connected together. If the
set of packets for a blue tree is represented as a circular list, then combining the sets of
packets of newly connected blue trees takes O(1)time per new blue edge.

To keep track of the vertex sets of the blue trees, we use a disjoint set data structure as in
Kruskal's algorithm; the time needed for set operations is asymptotically less than that
required for sorting. Ignoring the time for the set operations, the time for one pass of
Boruvka's algorithm is O(1)per packet. If all the packets were full, this time would be
O(/ log),m n summing to O()m time overall. The time to sort the packets, which is
O(log log)m n would dominate the running time.

This idea almost works, the catch being that there can be one non-full packet per vertex
initially, and if these packets are not at some point combined into full packets, then the
overall time to process non-full packets might be O(log).n n (But even so we get an
overall bound of O(log log log),n n m n+ better than Kruskal's algorithm and better than
Boruvka's algorithm with cleanup.) We can handle this by breaking the computation into
two parts, as in the fast-heap-based method described above: we run Boruvka's algorithm
with the initial packets for log logn passes. Then we reinitialize the packets, resulting in
at most / logn n non-full packets, and run the algorithm to completion. The result is an
algorithm running in O(log log)m n time. (Prove this.)

3.2. Faster Algorithms Using Fast Heaps, Packets, and Other Ideas

Thus we have two different ways to obtain an O(log log)m n time bound. One might well
suspect that if we can obtain an O(log log)m n bound without using fast heaps, then one
might be able to do even better using fast heaps. That is, the hybrid method described in
the introduction might not be best possible. This is true: one can implement a generalized
form of Boruvka's algorithm using fast heaps that has a time bound of *O(log).m n
Furthermore the idea of packets is independent of that of fast heaps and can be combined
with it to yield a further improvement, to *O(log log)m n time. Even this has been
improved: Chazelle, in a tour-de-force, using a new heap structure called a soft heap that
is allowed to make errors (but only in a controlled way) obtained a deterministic
O((,)) timem m nα − algorithm. Furthermore, by using additional ideas, this algorithm can
be modified to run in minimum time to within a constant factor, though no one at present

can say what the asymptotic bound is: it might be O(),m it might be O((,)),m m nα it
might be something in between. How is this possible, you ask? The secret is to build (by
brute-force search) an optimum algorithm for very small problem sizes, and use this
optimum algorithm in a rapidly-unwinding divide-and-conquer recurrence (which gets
down to very small sub-problems in a constant number of recursive calls). These
algorithms are all "beyond the scope of this course." But I'll offer one idea to think
about: consider a version of the simple two-pass algorithm described at the beginning of
this section in which we run Boruvka passes, using a fast heap for each blue tree to store
incident uncolored edges. Coloring an edge blue requires melding two such heaps. We
run Boruvka passes until some appropriate stopping criterion holds, then do a cleanup,
and then finish the computation using the JPD algorithm as at the beginning of the
section. What can you say about the running time of such an algorithm, especially as
applied to graphs of large girth? The girth of a graph is the length of the shortest simple
cycle.

3.3. A Randomized Linear-Time Algorithm

The holy grail for the MST problem is to find a linear-time algorithm. This has been
done, with a caveat: the algorithm uses random sampling. The algorithm is quite simple,
if one sweeps under the rug the details of one crucial part of the algorithm.

How might one find an MST in linear time? We know from the discussion in Section 2.3
that one pass of Boruvka's algorithm with cleanup will reduce the number of blue trees,
effectively the number of vertices, by at least a factor of two. If we had a corresponding
way, for a sufficiently dense graph, to reduce the number of edges by a constant factor in
linear time, we would be able to find an MST in linear time by appropriately intermixing
these steps: if the graph is sparse (m cn< for some appropriate constant)c do a Boruvka
step; otherwise, do an edge-thinning step. (Why would this result in a linear-time
algorithm?)

The missing part is thus an edge-thinning method. For this we use a generalization of
MST verification. Suppose we are given a tree T and asked to determine whether it is an
MST. The red rule implies that T is an MST if and only if, for every non-tree edge
{ , },v w { , }v w is maximum on the cycle formed by adding { , }v w to T. More generally, if T
is any tree, or even any forest, we can apply the red rule to reject any edge {v, w} not in
T if it forms a cycle with edges in T and it is maximum on this cycle. This gives us a
way to do thinning, but for this method to reject a lot of edges (we want to reject a
constant fraction), we must start with a good tree (or forest), perhaps not an MST but
something good enough.

To find a good forest, we combine random sampling with recursion. Specifically, the
edge-thinning step is as follows. Select a random sample of the edges by flipping a fair
coin (one whose probably of coming up heads is one half) once for each edge and putting
the edge in the sample if the coin comes up heads. (The expected size of the sample will
be half the total number of edges.) Next, find a minimum spanning forest F of the sample
by applying the whole algorithm recursively(!). (The sample may not define a connected

subgraph, so we may not get a spanning tree of the whole graph, only a spanning tree of
each connected component of the sample.) Reject (by the red rule) all the sampled edges
not in F. Test every edge not in the sample against F, and reject it if it forms a cycle with
edges in F and it is maximum on the cycle.

Now we have all the pieces (except for an efficient way to test edges not in the sample
against F, which I shall discuss later). The overall algorithm, which we present as an
algorithm to find a minimum spanning forest (one tree per connected component) of a
not-necessarily connected graph, consists of repeating the appropriate one of the
following cases until no edges remain, and then returning the set of edges colored blue by
Boruvka steps: if the graph contains fewer than cn edges, where n is the number of blue
trees, do a Boruvka step; otherwise, sample the uncolored edges, compute an MSF F for
the sample and the blue edges by applying the entire algorithm recursively, and thin the
graph using F and the red rule to reject every edge not in F that forms a cycle with F and
is maximum on the cycle.

Thinning Efficiency: The expected number of edges not rejected by a thinning step is at
most 2 .n That is, the expected number of edges left after a thinning step is at most 2 .n
(Thus for example if 4c = then thinning will on the average discard at least half the
edges.)

Proof: We use Kruskal's algorithm, but for purposes of the analysis only. Consider the
following process for doing the sampling, building F, and rejecting edges: sort the edges
in non-decreasing order by cost. Process the edges in order. To process an edge
{ , },v w flip the coin, resulting in H or T. If { , }v w connects two vertices in the same blue
tree, reject it (color it red). Otherwise, if the coin is H, color the edge blue: it is in the
sample and it belongs in F. Otherwise, leave it in the graph: it is not in the sample and it
cannot be rejected. This process gives exactly the same forest F and exactly the same set
of rejected edges as the algorithm. (Why?) But notice that if an edge is rejected, the
outcome of the coin flip is irrelevant! Thus we can modify the procedure, without
affecting its behavior, so that it first tests an edge to see if it forms a cycle and only flips
the coin if it does not. Now the edges that are not rejected are exactly those for which the
coin is flipped. Each time the coin is flipped, an H results in the addition of an edge to F.
But F can contain at most 1n− edges. Thus the sequence of non-thinned edges
corresponds exactly to a sequence of coin flips containing at most 1n− heads. What is
the expected length of such a sequence? It is at most 2 .n (Prove this; it follows from
very basic results in discrete probability.) QED

We still need a way to do the thinning. This problem is solvable by an extension of path
compression: union by rank or size cannot be used and something more complicated is
needed. This approach results in a time bound for thinning of O((,)).m m nα This bound
can be improved to O()m by adding the idea of building an optimum algorithm for very
small problem sizes. I omit the details of these ideas (at least here).

Now we derive a linear time bound on the running time of the randomized algorithm,
assuming that thinning takes linear time. We state the bound in terms of the number of

edges m of the problem graph; once a vertex becomes isolated (incident to no edges), we
just delete it. The algorithm is as follows: if the graph has at most cn blue trees (for
some constant c whose value we shall choose), do a Boruvka step, including a cleanup.
Assume this takes at most am time for some appropriate constant .a Otherwise, sample
the uncolored edges, find an MSF of the sample plus the blue trees by applying the
algorithm recursively, and do thinning. Assume that generating the sample and doing the
thinning takes at most bm time. In either case, apply the algorithm recursively to the
remaining graph. A Boruvka step colors at least / 2 /(2)n m c≥ edges blue and deletes
them (via the cleanup). A thinning step colors red on the average at least

2 2 / (1 2 /)m n m m c m c− ≥ − = − edges and deletes them. There is one recursive call if a
Boruvka step is performed, on a graph containing at most (1 1/(2))m c− edges. There are
two recursive calls if a thinning step is performed, on the sample graph and on the graph
remaining after the thinning. Together these two graphs have on the average at most

/ 2 2 / (1/ 2 2 /)m m c m c+ = + edges. As long as we choose 4,c > the recursive calls in
either case are on graphs with at most (1)e m− edges for min{1/(2),e c= 1/ 2 2 / } 0,c− >
and we will get a linear time bound.

To get such a bound, we charge the work done at each step to the decrease in the number
of edges. We do this by giving a graph with m uncolored edges a potential of ,km for a
suitably large .k Let us see what k needs to be. A Boruvka step reduces the potential by
at least / 2 ,m c which must be enough to pay for the am time spent during the step. That
is, we need 2 .k ac≥ A sampling and thinning step on the average reduces the potential
by at least (1/ 2 2 /)km c− (the rest of the potential is needed for the two sub-problems),
which must pay for the bm time spent during the step. Thus we need 2 /(4).k bc c≥ −
Choosing c to make these constraints equal gives / 4;c b a= + minimizing k then gives

8 2 .k a b= +

This result leaves open a number of interesting questions. A minor one is exactly how to
put the several pieces of the algorithm together in the best way to give the best constant
factor or the simplest algorithm. The most complicated part of the algorithm is the piece
I have not described, the thinning test. It would be nice to have a simpler solution for
this; perhaps randomization would help. Finally, is there a deterministic linear-time
algorithm?

