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Examples of fruitful interaction between
geometrical combinatorics and the design and analysis
of algorithms are presented. A demonstration is given
of the way in which a simple geometrical construction
yields new and efficient algorithms for various
searching and list manipulation problems.
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1. Introduction

Whenever two combinatorial structures are counted
by the same number, there exist bijections (one-one
mappings) between the two structures. One goal of geo-
metrical combinatorics (see, for example, Foata and
Schutzenberger [7]) is to explicitly construct such bijec-
tions. This is bringing the field very close to computer
science: One can regard combinatorial representations of
remarkable numbers as equivalent data structures; ex-
plicit bijections between such representations provide
coding and decoding algorithms between the structures.
Earlier investigations along these lines are reported in
Frangon et al. [10] and Flajolet et al. [6].

This paper should be regarded as an introduction to
using methods of geometrical combinatorics in the field
of algorithm design and analysis. For this purpose, we
consider representation of n! as a running example and
demonstrate how we are led to discovering new and
efficient data structures and algorithms for solving var-
ious data manipulation problems.
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In Section 2 we review representations of n! by per-
mutations, complete nXn diagrams (rook diagrams), and
subdiagonal tables (Lehmer code, inversion table), and
we follow the various appearances of Stirling numbers
in these representations.

In Section 3 we study the tree representations of n!,
showing the combinatorial significance of the pair of
inverse algorithms CUT and CONCATENATE.

In Section 4 we put the tree representations to an
original use for solving two-dimensional searching prob-
lems. We also present a new algorithm for merging
binary search trees.

In Section 5 we apply the basic construction to
representing linear lists. The conceptual simplicity of the
algorithms involved makes them easy to program, and
their average execution time is faster than that of any
linear list representation known to the author.

2. Classical Representations of Factorial

2.1 Permutations and Sequences

Let [#] denote the set {1, 2, ..., n}. A permutation is
a bijection o:[n] — [n]; we write 6 € S,, where §,, is the
symmetric group over n objects. A permutation ¢ € S,
can be represented by a word (1), o(2), ..., o(n) of
length n over [n]*; the bijective property of o is expressed
by i # j = o(i) # o(j) for 1 =<1, j < n (see Figure 1).

Permutations appear naturally in the analysis of al-
gorithms (decision trees) which can only perform com-
parisons on their inputs. Such algorithms have exactly
the same behavior on sequences of inputs sharing the
same relative ordering. To be precise, let $ = (s, . . ., Sa)
and S’ = (s1, ..., s») (with s;, s/ € IR for | <i =< n) be
two sequences of length n over a totally ordered set IR.
We say that S and S’ are order equivalent if 5, < 5; &
s{ < sj for | <is j=< n(see Figure 2).

Permutations can thus be regarded as equivalence
classes of sequences under order equivalence.

Let S € IR" be a sequence of length [S| = n. We
define the left-to-right minima of S as the subsequence
LRMIN(S) = (s;,» 8iy» - - - » 5;,) made of elements s; € S
such that s; < s; for 1 < j < i (see Figure 3).

Going from right to left and changing the order, we
can define the four sequences LRMIN, RLMIN,
LRMAX, and RLMAX. We also consider LRM =
LRMIN U LRMAX, RLM = RLMIN U RLMAX,
MIN = LRMIN U RLMIN, and MAX = LRMAX U
RLMIN.

An explicit bijection of Foata and Schutzenberger [7]
shows that the number of permutations ¢ € S, such that
ILRMIN(o)| = k is equal to the number of permutations
o € S, having k cycles.

2.2 Cartesian Representations

A complete n-diagram is a set D = {{x;, y}|1 =i =
n}, where {x;|1 = i< n} = {y|1 =j=<n} = [n] (see
Figure 4).
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Fig. l. A permutation 0 € S,.
6=(573961428)

Fig. 2. Two order equivalent sequences S and S’ and the permutation
o representing their equivalence class.

o =(573961428)

§ =(22,48,13,97,35,3, 17,5, 53)

S =(17,28,~03,5.1,23, -2.1,04, 1.2, 3.2)
Fig. 3.

§=(22481397353 175 53)
LRMIN(S) = (22 13 3)
RLMIN(S) = (3 5 53)
LRM(S) = (2248 13 97 3)
MIN(S) = (22 13 3 5 53)

LRMAX(S) = (22 48 97)

RLMAX(S) = (97 53)
RLM(S) = (97 3 5 53)
MAX(S) = (22 48 97 53)

Fig. 4. The complete n-diagram associated with (57396142 38).

V.
A

x

It is convenient to represent n-diagrams on an
nXn plane grid with one point on each line and each
column.

With each permutation o € S, we can associate the
diagram D, = {(i, 6(y)) |1 =i =< n}; conversely, with each
diagram D = {{x;, y;)|1 =i =< n} we can associate the
permutation 6 € S,, where a(x;) = y:.. This establishes a
natural bijection between permutations S, and complete
n-diagrams D;.

The plane representation of complete diagrams pos-
sesses eight natural symmetries, which correspond to the
following bijections S, — S, defined, for ¢ =

(o(1), ..., o(m)), by

D e=(o(m),...,a(1)
2)—o=n+1—0c(),....,n+1—-0(n)
B3) o '=('),...,07'(n).

and their compositions (see Figure 5).

Again, n-diagrams appear in the analysis of algo-
rithms as equivalence classes of sets of points in the
plane: Two sets of points P = {(x;, )|l <i=n, x; y:
€ R} and P’ are order equivalent if, for all | < i, j<n,
(x: < x; iff x/ < x/) and (y: < y; iff y/ < y/).

With each point p € D of an n-diagram D, we
associate the number LL(p) = |{{x: yi} |x: < x, y: < y,
(xi, yi) € D, (x, y) = p € D}| of points in D located in
the Jower left rectangle under and to the left of p; the
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Fig. 5. A permutation and its “natural” symmetries.

0=(573961428) o '=(683715294)
5=(824169375) & '=(492517386)
—0=(537149682) o0'=(427395816)
—-6=(286941735) §'=(618593724)

Fig. 6. The n-diagram associated with ¢ = (57396 1 4 2 8) and the
four inversion tables LL,, LR,, UL,, and UR,.

) 3
LL,=(0,1,0,3,2,0,2,1,7)
UL, =(0,0,2,0,2,5,4,6, 1)
LR, =(4,5,2,5,3,0,1,0,0)
UR.=(4,2,4,0,1,3,1,1,0)

Fig. 7. The subdiagonal table LL(1), ...
(573961428).
)

X

, LL(9) associated with

[x] Ix X

I 234567829

numbers UL, UR, and LR are defined in a symmetrical
fashion. If we consider the permutation associated with
D, the numbers LL, UL, UR, and LR represent the four
natural inversion tables (also called Lehmer code by
Knuth [13]) of the permutation associated with D (see
Figure 6).

2.3 Subdiagonal Tables

The correspondence between n-diagrams D and
the sequence (LL(1), ..., LL(n)) is a one-one map-
ping.

With each n-diagram, thus permutation, we associate
a sequence of numbers LL(1), ..., LL(n) such that 0 <
LL(i) <ifor 1 =i =< n. Such sequences of numbers are
called subdiagonal tables (see Figure 7).

Note that in this correspondence, left-to-right minima
are mapped into the bottom line (LL(#) = 0), and left-to-
right maxima into the top line (LL() = i — 1) of the
subdiagonal table.

Subdiagonal tables play an important role in com-
puter science: They are at the heart of interesting sorting
algorithms (see Knuth [13]), and they are used explicitly
or implicitly in all the algorithms known to the present
author for enumerating permutations or generating ran-
dom permutations. They are also called inversions.

They are important for counting purposes since a
random subdiagonal table can be regarded as the product
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of independent random variables vy, . . . , v, with 0 < v; <
i. The probability that v; = 0 is 1/i, so the average
number of zero elements in a subdiagonal table is 1 +
1/2 + ... + 1/n = H,, the nth harmonic number. The
distribution of this parameter, i.e., the number of subdi-
agonal tables of size n having k zeros, is the classical (see
Comtet [3]) Stirling number of first kind s, . The contri-
bution of the ith variable v; to the enumerating polyno-
mial ¥ s, xx*is (x + i — 1) so we have

Ysexf=x(x+D)...x+n~-1), forn=1l. (1)
k

An immediate consequence of the definition is

Sn k= (N — D)Sne1, 2 + Sn—1, 21, forl <k <n,
Sn,0 =0, Sn1=(n— DL

Snn =1, @
Putting everything together gives the following prop-
osition.

ProPOSITION 1. Stirling numbers of first kind sn,
(whose average value is (1/n!) Zk ks, » = H,) count:

(i) permutations o € S, such that | LRMIN(o)| = k, or
|RLMIN(6)| = k, or |LRMAX(o)| = k, or
|RLMAX(0)| = k;

(ii) permutations ¢ € S, having k cycles;

(iii) complete n-diagrams 8 € D,, such that | { p € 8| LL(p)
= (O} | = k, and similarly for LR, UL, and UR,

(iv) subdiagonal tables t € SD,, such that |{i|l <i=<n,
ti)y=0}|=k.

From the preceding definitions and correspon-
dences, the reader will easily construct explicit one-
one mappings between the above structures, counted
by Sn, k-

Going back to subdiagonal tables, we see that the
probability that v, =0 orv;=7— lis I fori= 1 and 2/
i for i > 1. The average number of elements on the bottom
or top line of a random subdiagonal table of size n is thus
2H, - 1.

Let #,,» be the number of tables ¢ € SD, having k
elements on either the top or the bottom line, ie., k =
[{i]ll =i=<n, t(i) = 0 or #(/) = i — 1}|. The enumerating
polynomial of t,, » is directly

Ztn,k,xk=x(2x)...(2x—i—2)...(2x‘—n-—2)
%

which, using (1), yields
tn k=25 Sy .
We can thus state Proposition 2.

PROPOSITION 2. The numbers t,x = 2% $4-1 11
(whose average value is (1/n!) }:k ktn » =2H, — 1) count:

(i) permutations o € S, such that |MIN(o)| = k, or
| MAX(0)| = k, or |LRM(o)| = k, or |RLM(0)| = k;
(iiy complete n-diagrams 8 € D, such that | { p € j| LL(p)
=@ or UL(p) = O} | = k, etc.;
(iii) subdiagonal tables t € SD,, such that |{i|l =i=<n,
i) =0ort(d) =i—1}|
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3. Tree Representation of Point Sets and Sequences

3.1 Representing a Plane Point Set by a Binary Tree

Let P= {py, ..., pn) be a finite set of points in the
plane, represented in some Cartesian coordinate system
so that p, = (x;, y;) with x;, ; EIRfor1 =i<n.

With such a plane point set P, we associate a labeled
binary tree, called the Cartesian tree ¢(P) of P by the
rules:

(1) If P = &, then ¥(P) = J, the empty tree.
) If P#D, let p = p; = (x;, y;) € P be the point of p
having the least y-coordinate, so that 1 = j # i <

[P| = y; > y: for (x;, y;) € P; let left(P) represent

the points in P whose x-coordinate is less than x;,

and right(P) its complement in P\{p}, so that

left(P) = {(x, y) € P|x < x;}, and right(P) =
{{x, y) € P|x > x;}. The tree ¥(P) is defined
recursively by the rule

Py =

€eft(P)) Aright(P))

To avoid cumbersome special cases, the above defi-
nition has assumed that different points in P have dif-
ferent x and y coordinates; should this not be the case,
ties can be broken in arbitrary ways to make this defi-
nition general (see Figure 8).

Let the x part of ¥(P) be the binary tree formed from
%(P) by only keeping for each node p = (x, y) in ¥(P)
the x value of p; the y part of ¥(P) is defined in a similar
way, and we can regard %(P) as constructed by a direct
Cartesian product of its x and y parts, which are two
labeled trees of the same shape (see Figure 9).

The characteristic properties of such labelings are:
(1) The x part of 4(P) is a binary search tree, i.e., the

x;8 increase as we traverse %(P) in symmetric order

(left subtree; root; right subtree; see Knuth [13]).

(2) The y part of @(P) is a binary tournament, i.e., the

yss increase as we follow any path from the root to a

leaf in 4(P).

3.2 Representing a Sequence by a Binary Tree

Let S = (51, ..., s») € IR” be a sequence of length
n. With such a sequence, we associate the point set P =
{(1, s1), ..., (n, s,)} and consider the tree 4(P) (see
Figure 10).

Fig. 9. The x and y Parts of the Cartesian Tree of Figure 8.

5/ \ZI
2/ \s 15/
N/

3 6

AN

28

232

Fig. 8. The Cartesian tree %(P) associated with the point set P =
{(2,22), (3, 48), (5, 13), (6, 97), (8, 35), (12, 3), (15, 17), (21, 5),
(28, 53)}.

G222 Gessd @D @85
SIIDERQED

The x part of such a tree is simply a binary tree
labeled by 1, 2, ..., n in symmetric order. Since x and
y parts have the same underlying binary tree, it is suffi-
cient to know the y part in order to reconstruct the entire
structure.

We have thus exhibited a one-one mapping between
sequences S € IR™ and binary tournaments of size n with
labels in IR. This bijection S — Z(S) can be defined
directly, without invoking point sets:

(1) To the empty sequence A(rn = 0) is associated the
empty tree &J; thus 7(A) = @.

(2) For n > 0, let i be such that s; = min; <; <, {s;}; we
define 7(S) =

L R

where L = J({s1, ..., si1)) and

R =J({si+1, - -, Sn))-

We call 7(S) the tournament representation of se-
quence S € IR"; conversely, with any binary tournament
T, we associate the sequence 7 (T') of its labels, taken
in symmetric order.

3.3 Combinatorial Properties of Binary Tournaments

We let T, denote the set of tournament representa-
tions of all permutations ¢ € S,, considered as elements
of [n]" (see Figure 11).

Correspondence 7: S, — T, being one-one implies
that | 7| = n!.

To express combinatorial properties of this corre-

7\
/ \35 |7/ \\53

A\

48 9
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Fig. 10. The Cartesian tree associated with the sequence
(22, 48, 13, 97, 35, 3, 17, 5, 53). The y part of this tree is given in
Figure 9.

spondence, we define the left branch LB (T) of a labeled
binary tree T as the sequence:

(1) LB (&) = A for the empty tree;

(2) LB (T) = w(T)-LB(XT)), where w(T) is the label
of the root of T # & and I(T) is the left subtree
of T.

We define the right branch RB (T) in a symmetrical
manner, and we let B (7) = LB (7) U RB (T) denote
the branches of T.

ProrosiTiON 3. Stirling numbers of first kind count
the binary tournaments T € T, of size n having a left
branch |LB (T)| = k or a right branch |RB (T)| = k. The
left branch and right branch of a random T € T, has
length H, = 1 + 1/2 + ... + 1/n. Numbers t, =
27151, k-1 count the binary tournaments T € T, such that
|B(T)| = |LB(T)| + |RB (T)| — | = k.

Proor. Correspondence J maps LRMIN(S) into
LB (T) and RLMIN(S) into RB (7). The result thus
follows from Propositions 1 and 2. a

3.4 Cutting a Cartesian Tree

Given the Cartesian tree 4(P) representing a set
of points P = {p;, ..., p.}, we wish to cut it in two
parts #(P~.) and %(P-.); here ¢ € IR is given, P., =
{p € P|lp = (x, y), x < ¢} is the subset of P whose x-
coordinate is <c and P-. is the complement (see Figure
12).

The cut operation is described by Algorithm 1 below;
if Tis a Cartesian tree and ¢ € IR a real number, the call
(L, R) « CUT(T, c) creates two Cartesian trees L =
#P<) and R = %(P-.), where P = € '(T) is the plane
set represented by T.

Fig. 11. The 6 = 3! Binary Tournaments 7.

Algorithm 1 (Cut of a Cartesian Tree)

proc(L, R) « CUT(CT, ¢)
Cartesian tree L, R, CT:; real c; point J A
if CT= D then (L, R) — (D, D)
else p «— v(CT),
if ¢ < x(p) then (L, R) « CUT(/(CT), ¢);
R —(R,p, r(T))
else (L, R) «— CUT((CT), c);
L« ([(T),p, L)
fi
fi
fproc CUT.

In this algorithm, we introduce the data type point;
a point p is a pair (a, b) € IR? of its x coordinate
x(p) = a and its y coordinate y(p) = b. The data type
Cartesian tree designates binary trees labeled by points
so as to form binary search trees on their x labels and
binary tournaments on their y labels. If CT is a Cartesian
tree, v(CT) is the point labeling the root of CT; the left
and right subtrees of CT are [(CT) and r(CT). Cartesian
trees are thus defined by the rules:

(1) The empty tree & is a Cartesian tree.

(2) If p is a point, L and R are Cartesian trees, then
(L, p, R) = CT is a Cartesian tree such that v(CT)
=p, (CT) = L and r(CT) = R provided that
(a) Yq € L:x(9) < x(p),

Vq € R:x(q) > x(p) (binary search tree in x);
(b) L#3I= y(«(L)) > y(p),

R # @ = y(v(R)) > y(p) (binary tournament in

»)-

The algorithm CUT(CT, ¢) need only examine a
path, path(l, ¢), in CT formed of the points p € CT for
which a comparison ¢ ? x( p) is performed; in the resulting
trees L and R, the points thus examined are found to
form RB (L) union LB (R). This simple observation
leads to an analysis of the number of comparisons in the
CUT algorithm and to the definition of an interesting
combinatorial correspondence.

ProrosITION 4. The average number of comparisons
¢ ? x(p) in CUT(CT, c), where |CT| = (n — 1) is 2H,, —
2; the probability that this number of comparisons is exactly
k equals 1/n! t, ps2 = 2%/n' 5,1 1. There is a one-one
mapping 0:T, — T, between binary tournaments trans-
Sforming the path, path(1, n, T), from the root to the point
labeled n in T € T, into the branches B (§(T)) of (T)
€ Ty |path(l, n, T)| = | B (6(T))|-

GO
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Fig. 12. The Cartesian Tree of Figure 8 Cutatc=17.

ProOOF. Let T € T, be a binary tournament, with
T = J(o) where 6 = (0(1), . . ., o(n)) is the permutation
obtained by taking the labels of T in symmetric order.
Let i = 67'(n) be the index of the node labeled  in that
traversal. We also consider the Cartesian tree %(P) as-
sociated with o by P = {(i, o(i)) |1 =< i =< n} as in Section
3.2. Note that %(P) can be formed from T by adding, as
an x coordinate to every node in 7, its index in symmetric
order. We proceed to form (L, R) « CUT(%(P), i).

The path path(l, n, T') is now in correspondence with
RB (L) union LB (R). Construct L’ and R’ by removing
(either from L or from R) the node whose label is
(i, n), remove the x part of all labels, and increase the y
labels by 1. We are left with two binary tournaments
L’ and R’, whose labels are all different, and labels
(L' URY={2,3,..., n}. The resulting binary tourna-
ment (T) = (R’, 1, L’y € T, is indeed such that

|B(@(T)| =1+ |LB(R")|+ |RB(L")| = [RB (L)]
+ |LB (R)| = |path(l, n, T)|.

Note that the associated permutation #(c) can be de-
scribed by the simple rule

80) = (o + 1)+ 1, -+, 0(n) + 1, 1,

o)+ 1, - 0 — 1)+ 1)

where i = ¢7'(n) is the index of the largest element in o.

The analysis of Algorithm 1 is performed under the
hypothesis that the n! order equivalence classes of Carte-
sian trees (P U (i, +)), where | P| = n — 1 are equally
likely. The number of comparisons ¢ ? x(p) is equal to
|path(1, n, T)|, where T is the order equivalence class of
(P U (¢, +)), and the rest of the proposition follows
from bijection # and Proposition 3 (see Figure 13). [

Algorithm 1 and the following algorithms are de-
scribed recursively; it is routine work for a trained com-
puter scientist to produce efficient nonrecursive versions
of these algorithms.

3.5 Concatenation of Cartesian Trees

The preceding section establishes that CUT(2, c) is
a one-one mapping between Cartesian trees P, value c,
and pairs (L, R) = CUT(P, ¢) of Cartesian trees stuch
that the x values of labels in L are <c, and they are >¢
in R. Given such a pair (L, R), the converse of CUT is
the concatenation of Cartesian trees, described by
Algorithm 2.
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€28,

Algorithm 2 (Concatenation of Cartesian trees L and R, such that
pPEL g€ R=x(p) <x(q)

proc CT « CONS(L, R)
Cartesian tree C7, L, R; comment Vp € L, g € R:x(p) < x(q);
if L =Q then CT « R
elsif R = then CT « L
elsif y(v(L)) < y(W(R)) then CT « {I(T), v(L), CONS(r(L), R))
elsif y(v(L)) > y(¥(R)) then CT « (CONS(L, I(R)), v(R), r(R))
fi

fproc CONS.

This algorithm is inverse to CUT in the sense that,
performing (L, R) « CUT(Th, ¢), Tz « CONS(L, R) is
equivalent to T» <« T). Precisely, it merges the two
ordered sequences RB (L) and LB (L) into the ordered
sequence path(l, ¢, CT) where ¢ = max(RB (L), LB (R)).
Although CUT(CT, ¢) and CONS(L, R) are mathemat-
ically inverse in this strong sense, the number of opera-
tions performed by both algorithms is not the same.

The reason is that the number C of comparisons
performed in merging two ordered sequences § =
(51, ..., 8) With 5; < s;41 for 1 =i < p and R =
(r1, ..., rg) with r; < rjy, for 1 < j < g is not equal to
p + q = |R| +|S|, but rather to |R| + | S| — |H(R, S)|
where H(R, S) = {rER|r>s,} U {sE S| s>ry} is the
set of elements of R (and S) greater than all elements in
S (and R).

PROPOSITION 5. The average number of comparisons
C(L, R) of the type y(v(L)) ? y(¥(R)) in Algorithm 2 is
equal t0 Hniy + Hpnir — 2, where n = |L|, m = |R|.

ProoF. Let H(L, R) represent the union of points in
RB (L) having a y coordinate greater than g together
with points in LB (R) greater than 4, here g(resp. d) is
the point in LB (R) (resp. RB (R)) having the largest y
coordinate. If y(d) < y(g), we have H(L, R) C LB (R),
else H(L, R) € RB(L). In both cases, C(L, R) =
IRB(L)| + |LB (B)| — | H(L, R)|.

A@A

To find another expression of C(L, R), we remark
that, if d < g, then C(L, R) = |RB (L)| + |LB (CONS(4,
R))| — 1; reestablishing symmetry yields the formula
C(L, R) = |RB (CONS(L, g))| + |LB (CONS(4, R))| —
2. The average value Hy+i + Hpper — 2 follows from the
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Fig. 13. The steps of bijection T— #(T) in the proof of Proposition 4;
here path(l, n, T) = (1,3, 7,9) and B ((T)) = (8, 2, 1, 4).

(0
T=
2 FaN
6 7 s a
s (®
EP) = /< 6,-I>\
/<3,3>\ <8,2>\
<i{,6> <5,7> <7,5> <9,4>
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CUT(4(P),4) = (L, R) with L = and R =
/<3,3>\ /<6,I>
<l,6> 4,9> <5,7> <8,2>
<8,8> <7,5> <9,4>
L = R = aT)=
ya AN AN
7 8 3 2 4
AN /\ /N /
9 6 5 8 3 7
/N '\
6 5 9

assumption that all (*}™) resulting order equivalence
trees are equally likely, and we apply Proposition 3. [

The preceding analysis of the number of comparisons
C(L, R) in the algorithm CONS(L, R) illustrates an
interesting point: This quantity has been analyzed geo-
metrically, i.e., it has been shown to correspond to some
intrinsic (static) parameter, expressed in terms of L, R,
and CT = CONS(L, R). A more computational and
naive approach to the analysis of this parameter can
easily lead to quite complicated formulas, as well as yield
a weaker result. We make other uses of the method of
geometric analysis of algorithms throughout this paper.

4. Applications to Searching

4.1 Two-Dimensional Searching

Cartesian trees (Section 3.1) are a natural data struc-
ture for representing plane sets and performing various
kind of searches. Natural procedures for MERGE,
SEARCH, SEARCHRANGE, and EXTRACT can be
designed and geometrically analyzed.
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Here, we limit ourselves to describing and analyzing
the insertion procedure INSERT(CT, p) which adds
point p to the Cartesian tree CT. If p has a y value
W p) < ¥(v(CT)) less than that of the root of CT, INSERT
merely cuts CT at x( p) to yield (L, R) = CUT(CT, x(p));
the result S of insert is then S = (L, p, R). If y(p) >
Y(v(CT)), we search for the largest subtree Q of CT, with
root on path(l, x(p)), CT) for which y(p) < y(»(Q)), in
which case we insert p in Q as described in the previous
case.

Algorithm 3 (Insertion of p in the Cartesian tree CT)

proc S « INSERT(CT, p)
Cartesian tree S, CT, L, R; point p;
if CT = then S — (D, p, D)
elsif y(p) < y(»(CT)) then (L, R) < CUT(CT, x(p)); S < (L, p, R)
elsif x(p) < x(v(CT)) then S «— (INSERT(/(CT), p), w(CT), r(CT))
else S « (I(CT), v(CT), INSERT(/(CT), p))
fi

fproc INSERT.

This algorithm involves C,(CT, p) comparisons be-
tween y coordinates y(p) ? y(W(CT)) and C«(CT, p)
comparisons between x coordinates, either of the type
x(p) ? x(W(CT)) or occurring in the call to CUT(CT,
x(p)). Comparisons C, are equal to the depth of p in the
result; using Proposition 4 and summing yields 2
(1+ 1/n) H, — 4.

PROPOSITION 6. The average number of x comparisons
C: in Algorithm 3 INSERT is 2H, — |, where n = | S| is
the size of the result. The probability that C. = k is ty, ».

ProOoOF. The assumptions in this analysis are that S
is a random element of 7, and that p can be any of the
n element of S, with equal probability. Let T, be the
subtree of root p in S. Our parameter C. is equal to
C. = |path(1, p, S)| + [RBU(T;)| + |LB({(T;))| (see
Figure 14).

In order to analyze this parameter, we generalize
bijection @ of Proposition 4 and construct a bijection 6,
which exchanges C, with path(l, n, 6,(S)). Bijection 4 is
the special case p = 1.

The easiest way to describe bijection 6, is to consider
the permutation o, = 7 ~(S) constructed by visiting S

Fig. 14. An example of application of bijection 6s.

P=3.08)=
S = O
2
0 N
(6) 4 3
2
&) N
O,
® ©®
©

path(l, 3, §) = (1, 3) C«(S,3)=6 path(l, 9, 6xS))
LB((Ty)) =(1,9 =(1,56,7,8,9)
RB((T3)) =(6,8)
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Fig. 15. Binary Search Tree and Binary Search Tree with Arrival Time Associated with § = (22, 48, 13, 97, 35, 3, 17, 5, 53).

BST (S)

in symmetric order; in the example of Figure 3, o, =
(683971524). Let 6, = (5(1), ..., o(n)) and define
o’ = Oy(c:) = (o'(1), ..., o’ (n)) by the rules:

(1) @) = o() iff a(¥) < p.
(2) o'() = o(i) — 1 iff o(i) > p.
3) o) = niff o(i) = p.

We then define 8,(S) = 7 (6,(05)) as the binary
tournament associated with ¢’ = 8,(0s).

The binary tournament #,(.S) has the same shape as
S, except for the subtree T, in which the two branches
RB(/(T,)) and LB(r(T,)) are mapped into path(root, n,
0p(T5))-

A-A

GD(S)

0 61(Ty)

The elements for a precise justification of this state-
ment are given in the proof of Proposition 4.

Since parameter S, has the same distribution as
path(l, n, G,(S)), the result follows from Proposi-
tion 3. d

4.2 Binary Search Trees

Let § = (51, ..., s») be an ordered sequence S € R".
With such a sequence can be associated the Cartesian
tree €(P) where P = {(s;, i)|]1 = i = n}, which we call
binary search tree with arrival time (BSTWAT) of S. The
x part of €(P) is the usual binary search tree associated
with S (see, for example, Knuth [13]); the y part of € (P)
specifies the rank of each element in sequence S (see
Figure 15).

Traditional algorithms SEARCH, INSERT, and EX-
TRACT are described and analyzed by Knuth [13]; a
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(<22.12)

BSTWAT (S)

complete geometrical treatment of these analyses is pro-
vided by Frangon [9]. In this paper, we limit ourselves to
presenting an algorithm for MERGING two binary
search trees, which is apparently original.

The algorithm for merging the two binary search
trees G and D considers the label x = v(D) at the root of
D; using CUT, it produces (L, R) = CUT(G, x) and
proceeds recursively to merge L with /(D), then R with
r(D). A precise description of MERGE is given in Al-
gorithm 4.

Algorithm 4 (An algorithm for merging the two binary search trees G
and D, producing the binary search tree S for result)

proc S «— MERGE(G, D)
binary search tree S, G, D, L, R;
ifD=Cthen S « G
else (L, R) — CUT(G, w(D));
S « (MERGEC(L, I(D)), v(D), MERGE(R, r(D)))
fi
fproc MERGE.

In this algorithm, comparisons occur during the call
to CUT(G, v(D)).

PropOSITION 7. If G and D are independent random
binary search trees of respective sizes n and m, the num-
ber of comparisons in MERGE(G, D) is equal to
2n+m+ DHpym — 2(n + DH, — 2(m + D)Hp,.

Proor. To carry out the analysis, we consider two
BSWATSs, G’ and D’, having the same x part as G and
D, respectively. The y labels in D’ are {1,2, ..., m} and
those in G’ are {m + 1, ..., m + n}. We can look at
MERGE as a succession of insertions (Algorithm 3) of
the elements py, ..., pn of D’, in order of increasing x-
value into Go= Gy, ..., G/ = Gi-y + pi, ...

During the insertion of the ith element, we only need
to count the number of comparisons X; of p; with
elements located below in the resulting tree G/. By
Proposition 6, we know that path(l, p;, G/) + X; =
path(1, n, G/), which combined with Proposition 4 yields
Xi = 2Hn+i - 2Hi-

The result follows by summing, and by use of the
identity leisk H; = (k + I)Hk — k. O

This MERGE(G, D) procedure reduces to the clas-
sical INSERT (Knuth [13]) at the leaves in the case
|G| = 1; in the case | D| = 1, we obtain the procedure of
insertion at the root discovered by Stephenson [15]. When
G and D are roughly of equal size, say G = O(n) and
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Fig. 16. The Sequence S = (22, 48, 13, 97, 35, 3, 17, 5, 53) and Its Position Tournament Representation 2(S).

D = O(n), then Proposition 7 shows that MERGE is
performed in average linear time O(n). Note that this
program, unlike the other ones presented in this paper,
requires the use of a stack in its nonrecursive description.

5. Applications to Linear Lists

A data structure for representing linear lists allows
one to manipulate sequences (or words) (si, ..., S» ) €
IR*, where the primitive operations allowed are

(1) SEARCH, INSERT, or DELETE the kth element
of a list;

(2) CONCATENATE two lists or CUT a list in kth
position.

We propose here to use a data structure derived from
Cartesian trees, allowing very simple algorithms for each
of these primitives to have an average execution time of
O(log n), where n is the size of the lists manipulated.

To represent the list S = (s, ..., S.), we use the
position tournament P(S) defined by the rules:

(1) (N =0
(2) If's; = min<j<n{s;}, then P(sy, ..., sn) =
'@((sly ---,si—l)) '@(<si+l, ---,sn))

In other words, #(S) is isomorphic to the binary
tournament J (S) of S (see Section 3.2), except that each
label p; in 2(S) is formed by the pair p; = (x;, r;), where
x; s the value of the ith element of S and r; — 1 is the
size of the left subtree /(T;) of root p; in #(S).

If p = (x, r) is a label in 2(S), we call rank(p) =r
the size of its left subtree increased by 1 (see Figure
16).

Searching for the kth element in such a structure is
isomorphic to searching a binary search tree: First con-
sider the rank r of the root; if r > k, we search the kth
element of the left subtree; if r = k, the root is the answer;
if r < k, we search the (k — r)th element of the right
subtree (see Algorithm 5).
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Algorithm 5 (Searching for the kth element of position tree P)

proc X <« SEARCH(Z, X)
real X; position tournament P; integer K;
comment | < K=< |P|;
if K = rank(v(P)) then X « x(v(P))
elsif K < rank(v(P)) then X — SEARCH(/(P), K)
else X < SEARCH(r(P), K — rank(v(P)))
fi

fproc SEARCH.

Analysis of this algorithm is a straightforward con-
sequence of the previous results.

PropPOSITION 8. The number C of comparisons in
executing Algorithm 5, X <« SEARCH(P, K) where
| P| = n is as follows:

() if k = 1, then average(C) = H, and prob(C = k) =
l/n!-sn, ks

(ii) if X is the largest x value in P, then average(C) =
2H, — 1 and prob(C = k) = 1/nl-t,» = 2*/n!.
Sn—1, k—1;

(iii) the average value of C in searching for all values
l=<k=nis2(1 + 1/n)H, - 3.

Proor. Conditions (i) and (ii) are mere rephrasing
of Propositions 3 and 4. Note that the analysis can be
refined in case (ii): the number of comparisons for which
K < rank(v(P)), i.e., the number i of executions of
instruction X «— SEARCH(#(P), K — rank(v(P)) has
(¥)sn-1, 21 for distribution.

To compute the average value of C in case (iii), we
note that it is equivalent to search P for each of its x
values; by Proposition 4, searching for the jth value
involves 2H; — 1 comparisons on the average, thus the
result (1/n)¥1< ;<. CH, — 1). O

Algorithms for cutting a position tournament P in
position K, with 0 < K < | P|, and the inverse operation
of concatenation, are straightforward adaptations (ho-
momorphisms to be precise) of CUT and CONS Algo-
rithms 1 and 2. Figure 17 illustrates these algorithms on
an example.

Similarly, insertion in a position tournament is a
direct adaptation of Algorithm 3, the analysis of Propo-
sition 6 remaining valid.

Algorithm 6 gives a complete description of
(X, 0) « EXTRACT(P, K) which extracts the kth
element X(1 = k < | P|) of position tournament P and
yields the position tournament Q for result.
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Fig. 17. Operations CUT and CONS on Position Tournaments.

Algorithm 6 (Extraction of the kth element of position tournament P)

proc (X, Q) < EXTRACT(P, K)
real X; position tournament P, Q, S; integer K;
comment | < K < |P|;
if K = rank(v(P)) then X « x(v(P)); Q «— CONS(/(P), r(P))
elsif K < rank(v(P)) then (X, S) «— EXTRACT(/(P), K);
Q «— (S, {(x(v(P)), rank(v(P)) — 1), r(P))
elsif K > rank(v(P)) then (X, ) < EXTRACT(r(P), K — rank(v(P)));
Q — (I(P), WP), S)
fi
fproc EXTRACT.

This algorithm performs two types of comparisons:
Rank comparisons K ? rank(v(P)) are analyzed in Prop-
osition 8; as for x comparisons that take place during
recursive calls to CONS(/(P), r(P)), an analysis by Fran-
con et al. [10] shows that the average value of this
parameter is | — (2H./n) + 1/n, where n = | P|.

6. Other Applications and Conclusions

Other interesting algorithms use binary tournaments
as their underlying combinatorial structure. The most
widely used is the sorting algorithm Quicksort of Hoare
{12], which has been completely analyzed by Sedgewick
[14]. The key to Quicksort is a partitioning algorithm,
whose successive applications implicitly constructs a bi-
nary search tree; the combinatorial tools shown in this
paper can be readily applied to confirm the analysis of
Sedgewick [14]. '

Another application has been discovered by Francon
et al. {10] who propose to represent priority queues (see
Knuth [13] for a definition) by binary tournaments. The
key to their result is a data structure, the pagoda, which
is an upside-down representation of binary tournaments;
the discovery of pagodas arises from a careful inspection
of the CONS Algorithm 2, showing that a botfom-up
merging of the sorted sequences RB(L) and LB(R) is
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P — CONS(L, R)

(L, R) « CUT(P, 5)

R

more efficient than the straightforward fop-down method
of this paper.

To conclude, we note that a careful use of the same
combinatorial structure, namely, binary tournaments,

~ leads to a wide variety of algorithms and data structures,

for sorting (quicksort), representing linear lists (position
tournaments), and priority queues (pagodas). These al-
gorithms have a definite practical significance, since each
of them provides the fastest average time solution known
to its specific problem.

Our contention here is that a close examination of
the underlying combinatorial structure (in our case per-
mutations) brings up interesting new algorithms and data
structures; it also brings a surprising amount of unity to
a field which we think badly needs it. One worthwhile
goal in that respect would be to apply the same kind of
work to another family of algorithms, including digital
search tree, h-code, and radix sorting (as described and
analyzed by Knuth [13]) and to bring to light the under-
lying combinatorial structure common to so many of
these algorithms. Despite the enormous number of inter-
esting solutions known for solving basic data manipula-
tion problems, we believe that most of these solutions
ultimately rest on a relatively small number of different
combinatorial structures. A progress in our understand-
ing of these questions should drastically affect the
way in which we discover and explain the fundamental
algorithms, as catalogued by Knuth [13] and Aho et al.

(1}

7. Bibliographical Note

An account of methods in combinatorial geometry is
given by Foata and Schutzenberger [7], which has had
great influence on the present work.

The classical results of Section 2 of this paper can be
found, for example, in Comtet [3]. Construction of the
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binary tournament (Section 3) associated with a permu-
tation is used by Foata and Schutzenberger [7] and Foata
and Strehl [8]. Various algorithmic uses of the construct
can also be found in Burge [4] and Viennot [16].

Binary search trees are discussed in particular by
Knuth [13] and Francon [9].

The analysis of position tournament algorithms is
implicit in Frangon et al. [10], where application to
priority queues is discussed. Balanced tree representa-
tions of linear lists are described by Aho et al. [1], Guibas
et al. [11], and Brown and Tarjan [2].

Finally, a much more comprehensive treatment of
combinatorial methods in algorithm design and analysis
is attempted by Flajolet et al. [5].
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pects of more general joint research with P. Flajolet, J.
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this paper all evolved from this joint work.
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239
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Florida International University, Miami, FL 33199;
305 552-2791.

30 June 1980

Panel on Software Metrics, Washington, D.C.
Sponsors: Yale University and Office of Naval Re-
search. Contact: ONR Software Metrics Panel, Attn.
Alan J. Perlis, Computer Science Dept., Yale Uni-
versity, 2158 Yale Station, New Haven, CT 06520.

19-21 August 1980
B National Artificial Intelligence Conference, Palo
Alto, Calif. Sponsor: American Association for Ar-
tificial Intelligence in cooperation with ACM SI-
GART. Conf. chm: J. Marty Tenenbaum, SRI In-
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ternational, 333 Ravenswood Ave., Menlo Park, CA
94025; 415 326-6200 x4167.

3-5 September 1980

19th Annual Lake Arrowhead Workshop on
Office Information Systems, near Los Angeles, Calif.
Sponsor: IEEE-CS. Workshop co-chm: Clarence A.
Eﬁis and Gary J. Nutt, Xerox PARC, 3333 Coyote
Hill Road, Palo Alto, CA 94304.

15-17 October 1980

V ICCRE, Fifth International Conference on
Computers in Chemical R ch and Education,
Toyohashi, Japan (a post congress symposium of
Seventh International CODATA = Conference,
Kyoto, Oct. 8-11). Contact: S. Sasaki, School of
Materials Science, Toyohashi University of Tech-
nology, Tempaku, Toyohashi, Japan 440.

2-5 November 1980

Fourth Annual Symposium on Computer Appli-
cations in Medical Care, Washington, D.C. Sponsor:
The George Washin%lon University Medical Center.
Prog. chm: Joseph T. O’Neill, National Center for
Health Services Research, Center Building, Room 8-
30 #1, 3700 East-West Highway, Hyattsville, MD
20782; 301 436-8946.

30 November-2 December 1980
B Micro 13—13th Annual Workshop on Micropro-
gramming, Colorado Sgrings, Colo. Sponsors: ACM
SIGMICRO, IEEE-CS. Conf. chm: G.R. Johnson,
Dept. of Engineering Science, Colorado State Uni-
versity, Fort Collins, CO 80523; 303 491-7585.

3-8 December 1980
B 1980 Winter Simulation Conference, Orlando,
Fla. Sponsors: ACM SIGSIM, ORSA, TIMS, AIEE,
SCS, U.S. Dept. of Energy. Conf. chm: Paul F. Roth,
U.S. Dept. of Energy, Mail Stop 4530, 12th and
Penn, Washington, DC 20461; 202 633-9629.

3-5 February 1981
B Fifth Berkeley Workshop on Distributed Data
Manag and Comp Networks, Emeryville,
Calif. Sponsor: Lawrence Berkeley Laboratory in
cooperation with ACM. Conf. chm: Rowland R.
Johnson, Lawrence Berkeley Laboratory, University
of California, Berkeley, CA 94720; 415 486-63Z1.

19-22 April 1981
B Computing for Development, Bangkok, Thai-
land. Sponsors: Carl Duisberg Geselischaft, Asian
Institute of Technology in cooperation with ACM
SIGBDP, SIGCAS, SF&MOD, IGSIM. Conf. chm:
M. Nawaz Sharif, Div. of Computer A ;)licalions.
Asian Institute of Technology, P.O. Box 2754, Bang-
kok, Thailand.

(Calendar continued on p. 242)
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