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1. Introduction 

W h e n e v e r  two  c o m b i n a t o r i a l  s t ruc tu res  are  c o u n t e d  
by  the  s a m e  n u m b e r ,  the re  exis t  b i j ec t ions  ( o n e - o n e  

m a p p i n g s )  b e t w e e n  the  two  s t ructures .  O n e  g o a l  o f  geo-  

me t r i ca l  c o m b i n a t o r i c s  (see, for  e x a m p l e ,  F o a t a  a n d  

S c h u t z e n b e r g e r  [7]) is to expl ic i t ly  cons t ruc t  such  b i jec-  

t ions.  T h i s  is b r i n g i n g  the  f ie ld  v e r y  close to c o m p u t e r  

science:  O n e  can  r e g a r d  c o m b i n a t o r i a l  r ep r e sen t a t i ons  o f  

r e m a r k a b l e  n u m b e r s  as e q u i v a l e n t  d a t a  s t ruc tures ;  ex-  

pl ici t  b i j ec t ions  b e t w e e n  such  r e p r e s e n t a t i o n s  p r o v i d e  

c o d i n g  a n d  d e c o d i n g  a l g o r i t h m s  b e t w e e n  the  s t ructures .  

Ea r l i e r  i nves t iga t ions  a l o n g  these  l ines  are  1;eported in 

F r a n ~ o n  et al. [10] a n d  F l a j o l e t  et al. [6]. 

T h i s  p a p e r  s h o u l d  be  r e g a r d e d  as an  i n t r o d u c t i o n  to 

us ing  m e t h o d s  o f  g e o m e t r i c a l  c o m b i n a t o r i c s  in the  f ie ld  

o f  a l g o r i t h m  des ign  a n d  analysis .  F o r  this  pu rpose ,  we  

c o n s i d e r  r e p r e s e n t a t i o n  o f  n! as a r u n n i n g  e x a m p l e  a n d  

d e m o n s t r a t e  h o w  we are  led to d i s c o v e r i n g  n e w  a n d  

ef f ic ien t  d a t a  s t ruc tures  a n d  a l g o r i t h m s  for  so lv ing  var -  

ious  d a t a  m a n i p u l a t i o n  p r o b l e m s .  
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In  Section 2 we review representat ions o f  n! by per-  
mutat ions,  comple te  n×n diagrams (rook diagrams),  and  
subdiagonal  tables (Lehmer  code, inversion table), and  
we follow the var ious appearances  o f  Stifling number s  
in these representat ions.  

In Section 3 we study the tree representat ions o f  n!, 
showing the combina tor ia l  significance o f  the pa i r  o f  
inverse a lgori thms C U T  and C O N C A T E N A T E .  

In  Section 4 we put  the tree representat ions to an 
original use for solving two-dimens iona l  searching prob-  
lems. We  also present  a new algor i thm for  merging  
b inary  search trees. 

In  Section 5 we app ly  the basic construct ion to 
represent ing l inear lists. The  conceptua l  simplici ty o f  the 
a lgor i thms involved makes  them easy to p rogram,  and  
their  average  execut ion t ime is faster  than  that  o f  any  
l inear  list representat ion known to the author .  

Fig. 1. A permutation e E Sg. 

0 = ( 5 7 3 9 6 1 4 2 8 )  

Fig. 2. Two order equivalent sequences S and S' and the permutation 
o representing their equivalence class. 

o = ( 5 7 3 9 6  1428) 
S = (22, 48, 13, 97, 35, 3, 17, 5, 53) 
S' = (1.7, 2.8, -0.3, 5.1, 2.3, -2.1, 0.4, -1.2, 3.2) 

Fig. 3. 
S=(2248 13 97 353 17553) 

LRMIN(S) = (22 13 3) 
RLMIN(S) = (3 5 53) 

LRM(S) = (22 48 13 97 3) 
MIN(S) = (22 13 3 5 53) 

LRMAX(S) = (22 48 97) 
RLMAX(S) = (97 53) 

RLM(S) = (97 3 5 53) 
MAX(S) = (22 48 97 53) 

2. Classical Representations of  Factorial 

2.1 Permutations and Sequences  
Let [n] denote  the set { 1, 2 . . . . .  n}. Apermutation is 

a bijection a: [n]  ---> [n]; we write a E S,,  where  S,, is the 
symmet r ic  group  over  n objects. A pe rmuta t ion  o E S ,  
can be represented by a word  a(1), o(2) . . . . .  o(n) o f  
length n over  [n]*; the bij ective p roper ty  o f  o is expressed 
by  i # j ~  o(i) # a( j)  for 1 _< i,j<_ n (see Figure  1). 

Permuta t ions  appea r  natura l ly  in the analysis o f  al- 
gor i thms (decision trees) which can  only pe r fo rm com-  
parisons on their inputs. Such a lgor i thms have  exact ly 
the same behav ior  on sequences o f  inputs  sharing the 
same relative ordering.  To  be precise, let S = (Sl . . . . .  sn) 
and S '  = (s~ . . . . .  s ' )  (with si, si' E 1R for  1 _ i < n) be 
two sequences o f  length n over  a totally ordered se t /R .  
We  say that  S and  S '  are order equivalent i f  si < sj ¢~ 
sl < sj for 1 _< i # j --< n (see Figure  2). 

Permuta t ions  can thus be regarded as equivalence 
classes o f  sequences under  order  equivalence.  

Let  S E /R" be a sequence o f  length IsI  = n. We  
define the left-to-right minima o f  S as the subsequence  
L R M I N ( S )  = (sil, s~ . . . . .  sik) m a d e  o f  e lements  s~ ~ S 
such that  si < sj for  1 _< j < i (see Figure  3). 

Go ing  f rom right to left and  changing the order,  we 
can define the four  sequences L R M I N ,  R L M I N ,  
L R M A X ,  and R L M A X .  We also consider  L R M  = 
L R M I N  U L R M A X ,  R L M  = R L M I N  U R L M A X ,  
M I N  = L R M I N  U R L M I N ,  and  M A X  = L R M A X  O 
R L M I N .  

An explicit bijection o f  Foa t a  and  Schutzenberger  [7] 
shows that  the n u m b e r  o f  pe rmuta t ions  o ~ S ,  such that  
I L R M I N ( o )  I = k is equal  to the n u m b e r  o f  pe rmuta t ions  
o E Sn having  k cycles. 

2.2 Cartesian Representations 
A complete n-diagram is a set D = {(xi, yi)  ] 1 ~ i <_ 

n}, where  (x i l l  _< i_< n} = {yj[1 _ j _  n} = In] (see 
Figure 4). 
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Fig. 4. The complete n-diagram associated with (5 7 3 9 6 1 4 2 8). 

A 

1 
--] 

I - 
v 

It is convenient  to represent  n -d iagrams  on an 
nXn plane  grid with one point  on each line and  each 
column.  

With  each pe rmuta t ion  o E S, ,  we can associate the 
d iag ram Do = ((i, o(0)  [ 1 --< i _< n);  conversely,  with each 
d iag ram D --- {(xi, y i ) [ l  --< i _< n) we can associate the 
pe rmuta t ion  o E Sn, where  o(x3 = yi. This establishes a 
na tura l  bijection between pe rmuta t ions  Sn and  comple te  
n-d iagrams D,.  

The  p lane  representa t ion o f  comple te  d iagrams  pos- 
sesses eight na tura l  symmetr ies ,  which  cor respond  to the 
following bijections S,, ~ S, ,  defined, for  o = 
(o(1) . . . . .  o(n)), by 

(1) a = (o(n) . . . . .  o ( l ) )  
(2) - o  = (n + 1 - o (1), . . .  , n + 1 - o(n)) 
(3) o - '  = (o - ' ( 1 )  . . . . .  o- l (n)) .  

and their  composi t ions  (see Figure  5). 
Again,  n -d iagrams  appea r  in the analysis o f  algo- 

r i thms as equivalence  classes o f  sets o f  points  in the 
plane: Two  sets o f  points  P = {(x~, yj) [ 1 <_ i < n, xi, yi 
E R} and P '  are order equivalent if, for all 1 _< i, j _< n, 
(xi < xj i f f  x / <  x]) and  (yi  < flj i f fy / '  < yj) .  

Wi th  each point  p E D o f  an n -d iagram D, we 
associate the n u m b e r  L L ( p )  = I { (xi, yi)  [xi < x, yi < y,  
(xg, yi) ~ D, (x, y )  = p E D}[ o f  points  in D located in 
the lower left rectangle under  and  to the left o f  p; the 
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Fig. 5. A permutation and its "natural" symmetries. 

0 = ( 5 7 3 9 6 1 4 2 8 )  o - ~ = ( 6 8 3 7 1 5 2 9 4 )  
6 = ( 8 2 4 1 6 9 3 7 5 )  f i - ~ = ( 4 9 2 5 1 7 3 8 6 )  

- 0 = ( 5 3 7 1 4 9 6 8 2 )  o - 1 = ( 4 2 7 3 9 5 8 1 6 )  
- 6 = ( 2 8 6 9 4 1 7 3 5 )  6 - ~ = ( 6 1 8 5 9 3 7 2 4 )  

Fig. 6. The n-diagram associated with o = ( 5 7 3 9 6 1 4 2 8 )  and the 
four inversion tables LLo, LRo, ULo, and URo. 

^ I 
L L o = ( 0 , 1 , 0 , 3 , 2 , 0 , 2 , 1 , 7 )  
U L 0 = ( 0 , 0 , 2 , 0 , 2 , 5 , 4 , 6 , 1 )  
L R o = ( 4 , 5 , 2 , 5 , 3 , 0 , 1 , 0 , 0 )  
U R ~ = ( 4 , 2 , 4 , 0 , 1 , 3 , 1 , 1 , 0 )  

o f  independent random variables Vl . . . . .  vn with 0 <_ vi < 
i. The  probabi l i ty  that  Vi = 0 is l / i ,  SO the average  
n u m b e r  o f  zero elements  in a subdiagonal  table is 1 + 
1/2 + . . .  + 1/n = H~, the nth ha rmon ic  number .  T h e  
distr ibution of  this parameter ,  i.e., the n u m b e r  o f  subdi-  
agonal  tables of  size n having k zeros, is the classical (see 
Comte t  [3]) Stirling number o f  f irst  k ind s~. k. The  contri-  
but ion of  the ith var iable  vi to the enumera t ing  po lyno-  
mial  ~k s~, kx k is (x + i - 1) so we have  

~, S~,kX k ---- X(X +1)  . . .  (X + n -- 1), for n -- 1. (1) 
k 

An immedia te  consequence of  the definit ion is 

sn, k = (n - 1)s~-l,k + s,-a,k-1, for  1 _< k --< n, 
s ~ , 0 = 0 ,  sn ,~=  1, s ~ , l = ( n -  1)!. (2) 

Fig. 7. Thesubd iagona l t ab le  LL(I) . . . . .  LL(9) associated with 
( 5 7 3 9 6 1 4 2 8 ) .  

X 
X X 

I×l × 
xl  x x I 
1 2 3 4 5 6 7 8 9  

numbers  UL,  UR,  and L R  are def ined in a symmetr ica l  
fashion. I f  we consider the pe rmuta t ion  associated with 
D, the numbers  LL, UL,  UR,  and  L R  represent  the four  
natural  inversion tables (also called L e h m e r  code by 
Knu th  [13]) o f  the pe rmuta t ion  associated with D (see 
Figure 6). 

2.3 Subdiagonal Tables 
The  correspondence  between n-d iagrams D and 

the sequence (LL(1) . . . . .  LL(n)) is a o n e - o n e  m a p -  
ping. 

Wi th  each n-diagram,  thus permuta t ion ,  we associate 
a sequence o f  numbers  LL(1) . . . . .  LL(n) such that  0 _< 
LL(i)  < i for 1 <_ i _< n. Such sequences o f  numbers  are 
called subdiagonal tables (see Figure  7). 

Note  that  in this correspondence,  left-to-right m i n i m a  
are m a p p e d  into the bo t tom line (LL(i )  = 0), and left-to- 
right m a x i m a  into the top line (LL(i )  = i - 1) o f  the 
subdiagonal  table. 

Subdiagonal  tables play an impor tan t  role in com-  
puter  science: They  are at the heart  o f  interesting sorting 
algori thms (see K n u t h  [13]), and  they are used explicitly 
or implicit ly in all the a lgori thms known to the present  
author  for enumera t ing  permuta t ions  or  generat ing ran-  
d o m  permutat ions .  They  are also called inversions. 

They  are impor tan t  for count ing purposes  since a 
r a n d o m  subdiagonal  table can be regarded as theproduct  

Putt ing everything together  gives the following prop-  
osition. 

PROPOSITION 1. Stirling numbers o f  f irst  k ind Sn.k 
(whose average value is ( l /n ! )  ~k ksn, k -- Hn) count: 

(i) permutations o E Sn such that ILRMIN(o ) I  = k, or 
I R L M t N ( o ) I  = k ,  or I L R M A X ( o ) I  = k ,  or 
I R L M A X ( o )  I = k; 

(ii) permutations o ~ Sn having k cycles; 
(iii) complete n-diagrams ~ E Dn such that I {P E 8 1 L L ( p  ) 

= 0 }  I = k, and similarly f o r  LR,  UL, and UR; 
(iv) subdiagonal tables t E SDn such that I(il 1 ~ i _< n, 

t(i) = 0} I = k. 

F r o m  the preceding definit ions and  correspon-  
dences, the reader  will easily construct  explicit o n e -  
one mappings  be tween the above  structures, counted 
by  s~,k. 

Going  back  to subdiagonal  tables, we see that  the 
probabi l i ty  that  vi = 0 or vi = i - 1 is 1 for i = 1 and  2 /  
i for i > 1. The average number o f  elements on the bottom 
or top line o f  a random subdiagonal table o f  size n is thus 
2 H ~ -  1. 

Let t~, k be the n u m b e r  o f  tables t ~ SDn having k 
elements  on either the top or the bo t tom line, i.e., k = 
I {il 1 <_ i <_ n, t(i) = 0 or t(0 = i - 1)1. The  enumera t ing  
po lynomia l  o f  t~, k is directly 

t~,~c k = x ( 2 x ) . . .  (2x - i - -  2) . . .  (2x -- n - 2) 
k 

which, using (1), yields 

t n ,  k = 2 k-1 Sn-x, k-a. 

We can thus state Proposi t ion 2. 

PROPOSITION 2. The numbers tn, k = 2 k-~ Sn-Lk-x 
(whose average value is ( l /n ! )  ~'k ktn, h = 2Hn - 1) count: 

(t) permutations o E Sn such that [MIN(o)[  = k, or 

I M h S ( o ) l  = k, or ILRM(o)I  = k, or IRLM(o)I  = k; 
(iO complete n-diagrams ~ E Dn such that I(P ~Jl L L ( p )  

= 0 or UL(p )  = O} I = k, etc.; 
(iii) subdiagonal tables t E SDn such that I{il 1 _< i --< n, 

fit) = 0 or t(i) = i -  1)1. 
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3. Tree Representation of Point Sets and Sequences 

3.1 Representing a Plane Point Set by a Binary Tree 
Let P = (p l  . . . . .  pn) be a finite set of  points in the 

plane, represented in some Cartesian coordinate system 
so tha tp i  = (xi, yi) with xi, yi E IR for 1 _ i _< n. 

With such a plane point set P, we associate a labeled 
binary tree, called the Cartesian tree (g(P) of P by the 
rules: 
(1) I f P  = @, then (g(P) = O, the empty tree. 
(2) I f  P ~ ~ ,  let p = p~ = (xi, yi) E P be the point o f p  

having the least y-coordinate, so that 1 _< j ~ i _< 
Iel ~ yj > y~ for (xj, yj) ~ P; let left(P) represent 
the points in P whose x-coordinate is less than xi, 
and right(P) its complement  in P\{p} ,  so that 
left(P) = ((x,  y)  E PI x < x~}, and right(P) = 
{(x, y) E P ix  > xi}. The tree ~¢(P) is defined 
reeursively by the rule 

,e(e) = 

~(left(P)) ~(right(P)) 

To avoid cumbersome special cases, the above defi- 
nition has assumed that different points in P have dif- 
ferent x and y coordinates; should this not be the case, 
ties can be broken in arbitrary ways to make this defi- 
nition general (see Figure 8). 

Let the x part of  oK(P) be the binary tree formed from 
~f(P) by only keeping for each node p = (x, y)  in ~(P) 
the x value of  p; the ypart  of ~(P) is defined in a similar 
way, and we can regard ~(P) as constructed by a direct 
Cartesian product of  its x and y parts, which are two 
labeled trees of  the same shape (see Figure 9). 

The characteristic properties of  such labelings are: 
(1) The x part  of  ~(P) is a binary search tree, i.e., the 

xis increase as we traverse ~(P) in symmetric order 
(left subtree; root; right subtree; see Knuth  [13]). 

(2) The y part  of  ~(P) is a binary tournament, i.e., the 
y~s increase as we follow any path from the root to a 
leaf in c~(p). 

3.2 Representing a Sequence by a Binary Tree 
Let S = (sl . . . .  , s,} E / R "  be a sequence of  length 

n. With such a sequence, we associate the point set P = 
((1, Sl) . . . . .  (n, s~)} and consider the tree (g(P) (see 
Figure 10). 

Fig. 9. The x and y Parts of  the Cartesian Tree of  Figure 8. 

(2 / \  
5 21 

2 / \  / \  8 15 28 
\ / 

3 6 
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Fig. 8. The Ca~esian tree ~(P) associated with the point set P = 
{(2, 22), (3, 48), (5, 13), (6, 97), (8, 35), (12, 3), (15, 17), (21, 5), 
(28, 53)}. 

The x part of  such a tree is simply a binary tree 
labeled by 1, 2 . . . . .  n in symmetric order. Since x and 
y parts have the same underlying binary tree, it is suffi- 
cient to know the y part  in order to reconstruct the entire 
structure. 

We have thus exhibited a one-one  mapping between 
sequences S E / R  n and binary tournaments of  size n with 
labels in /R. This bijection S ~ J ( S )  can be defined 
directly, without invoking point sets: 

(1) To the empty sequence A(n = 0) is associated the 
empty tree ~;  thus J ( A )  = ~.  

(2) For n > 0, let i be such that si = minl_<j_<, (sj}; we 
define J-(S) = 

L R 

where L -- @((sl . . . . .  si-1)) and 
R = J ( ( S i + l  . . . .  , s .>) .  

We call 9-(S) the tournament representation of  se- 
quence S ~ / R " ;  conversely, with any binary tournament  
T, we associate the sequence : - - I ( T )  of  its labels, taken 
in symmetric order. 

3.3 Combinatorial Properties of Binary Tournaments 
We let T, denote the set of  tournament  representa- 

tions of  all permutations o E S,, considered as elements 
of  [n]" (see Figure 11). 

Correspondence Y." S,  ~ T, being one-one  implies 
that I J n l  = n!. 

To express combinatorial  properties of  this corre- 

/ ' \  
13 5 

/\ /\ 
22 35 17 ,53 
\ / 
4 8  97 
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Fig. 10. The Cartesian tree associated with the sequence 
(22, 48, 13, 97, 35, 3, 17, 5, 53). The y part of this tree is given in 
Figure 9. 

spondence,  we define the left branch LB (T)  o f  a labeled 
b inary  tree T as the sequence: 

(1) LB (0 )  = A for the emp ty  tree; 
(2) LB (T)  = v(T) .LB(I(T)) ,  where  v(T) is the label 

o f  the root o f  T ~ ~ and  l (T) is the left subtree 
o f  T. 

We  define the right branch RB (T)  in a symmetr ica l  
manner ,  and  we let B (T)  = LB (T)  O R B  (T)  denote  
the branches of  T. 

PROPOSITION 3. Stirling numbers o f  first kind count 
the binary tournaments T E Tn o f  size n having a left 
branch ILB (T)I = k or a right branch IRB (T)[  = k. The 
left branch and right branch o f  a random T ~ Tn has 
length Hn = 1 + 1/2 + . . .  + 1/n. Numbers &,k = 

k - 1  2 s~-l, k-t count the binary tournaments T E Tn such that 
IB (T)I  = ILB (T)I  + IRB (T)[  - 1 -- k. 

PROOF. Correspondence  J - m a p s  L R M I N ( S )  into 
LB (T)  and  R L M I N ( S )  into RB (T) .  T h e  result thus 
follows f rom Proposi t ions 1 and  2. 0 

3.4 Cut t ing  a C a r t e s i a n  T r e e  

Given  the Car tes ian tree ~(P)  represent ing a set 
o f  points P = {pl . . . . .  p~),  we wish to cut it in two 
parts c~(P<c) and  ~(P>_c); here c E /R is given, P<c = 
( t  7 E PIP = (x, y ) ,  x < c) is the subset o f  P whose x-  
coordinate  is < c  and  P>~ is the complemen t  (see Figure  
12). 

The  cut opera t ion is described by Algor i thm 1 below; 
if T is a Car tes ian tree and  c E / R  a real number ,  the call 
(L, R) ~ CUT(T ,  c) creates two Car tes ian  trees L = 
c¢(P<c) and  R = c¢(p_>~), where  P = ~ - I ( T )  is the p lane  
set represented by  T. 

Fig. 11. The 6 = 3! Binary Tournaments Ta. 

Algorithm 1 (Cut of a Cartesian Tree) 

proe(L R) ~ CUT(CT, c) 
Cartesian tree L, R, CT; real c; point p; 
if CT = O then (L, R) ~-- (0, 0 )  

else p .-- v(CT); 
if c < x(p) then (L, R) ..-- CUT(I(CT), c); 

R ~-- (R ,p ,  r (T) )  
else (L, R) <--- CUT(r(CT), c); 

L ,~-- (l(T),p, L) 
fi 

fi 
fproc CUT. 

In this algori thm, we introduce the da ta  type point; 
a point p is a pair  (a, b) E /R 2 o f  its x coordinate  
x(p)  = a and its y coordinate  y(p)  = b. The  da ta  type 
C a r t e s i a n  tree  designates b inary  trees labeled by points  
so as to fo rm binary  search trees on their  x labels and  
binary tournaments  on t he i ry  labels. I f  CT is a Car tes ian 
tree, v(CT) is the point  labeling the root o f  CT;  the left 
and fight subtrees o f  C T  are I(CT) and r (CT) .  Car tes ian 
trees are thus def ined by  the rules: 

(1) The  emp ty  tree O is a Car tes ian tree. 
(2) I f /7  is a point, L and  R are Car tes ian  trees, then 

(L, p, R) = CT is a Car tes ian tree such that  v(CT) 
= p, l (CT) = L and r(CT) = R provided  that  

(a) Vq E L:x(q)  < x(p),  
Vq E R:x(q)  > x(p)  (binary search tree in x); 

(b) L ~ 0 ~ y(v(L)) > y(p),  
R ~ 0 ~ y(v(R)) > y (p)  (binary t ou rnamen t  in 
y). 

The  algor i thm C U T ( C T ,  c) need only examine  a 
path,  pa th( l ,  c), in CT fo rmed  o f  the points  p E C T  for  
which a compar i son  c ? x(p)  is performed;  in the resulting 
trees L and  R, the points  thus examined  are found to 
fo rm RB (L) union LB (R). This  s imple observat ion 
leads to an analysis o f  the n u m b e r  o f  compar i sons  in the 
C U T  algor i thm and to the definit ion o f  an  interesting 
combina tor ia l  correspondence.  

PROPOSITION 4. The average number o f  comparisons 
c ? x(p)  in CUT(CT,  c), where [CT[ = (n - l) is 2Hn - 
2; the probability that this number o f  comparisons is exactly 
k equals 1/n!.tn, k+2 = 2k/n!.sn-l,k. There is a one-one 
mapping O: Tn ---, T~ between binary tournaments trans- 
forming the path, path( l ,  n, T), f rom the root to the point 
labeled n in T E T, into the branches B (O(T)) o f  O(T) 

T~: IPath(l ,  n, T)I  -- IB (O(T))I. 
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Fig. 12. The Cartesian Tree of Figure 8 Cut at c = 7. 

PROOF. Let T E Tn be a binary tournament, with 
T = ~-(o) where o = (o(1) . . . . .  o(n)) is the permutation 
obtained by taking the labels of  T in symmetric order. 
Let i = o-~(n) be the index of  the node labeled n in that 
traversal. We also consider the Cartesian tree c~(p) as- 
sociated with o by P = ((i, o(0)11 _< i _< n) as in Section 
3.2. Note that ~(P) can be formed from T by adding, as 
an x coordinate to every node in T, its index in symmetric 
order. We proceed to form (L, R) <-- CUT(C~(P), 0. 

The path path(l,  n, T) is now in correspondence with 
RB (L) union LB (R). Construct L '  and R '  by removing 
(either from L or from R) the node whose label is 
(i, n), remove the x part of  all labels, and increase the y 
labels by I. We are left with two binary tournaments 
L '  and R', whose labels are all different, and labels 
(L" U R') = {2, 3 . . . . .  n). The resulting binary tourna- 
ment O(T) = (R', l, L ' )  E T, is indeed such that 

I B (0(T)I = 1 + ILB (R')I + IRa (L')] = IRB (L)I 
+ ILB (R)I = Ipath( l ,  n, T)I.  

Note that the associated permutation 0(o) can be de- 
scribed by the simple rule 

0(o) = (o(i  + 1) + 1, . . .  , o(n) + 1, l, 
tr(1) + 1, . . .  , o(i -- l) + l) 

where i = o-l(n) is the index of  the largest element in o. 
The analysis of  Algorithm l is performed under the 

hypothesis that the n! order equivalence classes of  Carte- 
sian trees (P t.J (i, +oo)), where IPI = n - 1 are equally 
likely. The number of  comparisons c ? x(p) is equal to 
Ipath(1, n, T)I, where T is the order equivalence class of  
(P t3 (c, +0o)), and the rest of  the proposition follows 
from bijection 0 and Proposition 3 (see Figure 13). [3 

Algorithm 1 and the following algorithms are de- 
scribed recursively; it is routine work for a trained com- 
puter scientist to produce efficient nonrecursive versions 
of these algorithms. 

3.5 C o n c a t e n a t i o n  o f  Cartes ian  T r e e s  
The preceding section establishes that CUT(P,  c) is 

a one-one mapping between Cartesian trees P, value c, 
and pairs (L, R) = CUT(P, c) of  Cartesian trees such 
that the x values of  labels in L are <c, and they are >c  
in R. Given such a pair (L, R), the converse of  CUT is 
the concatenation of  Cartesian trees, described by 
Algorithm 2. 
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Algorithm 2 (Concatenation of  Cartesian trees L and R, such that 
p E L, q E R ~ x(p) < x(q)) 

pro¢ CT ~ CONS(L, R) 
Cartesian tree CT, L, R; comment Vp E L, q ~ R:x(p)  < x(q); 
if L = ~ then CT ~ R 
elsif R = O then CT ~ L 
elsif y(v(L)) < y(v(R)) then CT *-- (I(T), v(L), CONS(r(L), R)) 
elsify(v(L)) > y(v(R)) then CT *-- (CONS(L, I(R)), v(R), r(R)) 

fi 
fproe CONS. 

This algorithm is inverse to CUT in the sense that, 
performing (L, R) ~ CUT(T~, c), T2 *-- CONS(L, R) is 
equivalent to T2 ~ T1. Precisely, it merges the two 
ordered sequences RB (L) and LB (L) into the ordered 
sequence path(l,  c, CT) where c = max(RB (L), LB (R)). 
Although CUT(CT, c) and CONS(L, R) are mathemat- 
ically inverse in this strong sense, the number of opera- 
tions performed by both algorithms is not the same. 

The reason is that the number C of  comparisons 
performed in merging two ordered sequences S = 
(sl . . . . .  sp) with Si < Si+l for 1 _< i < p and R = 
(rl . . . . .  rq) with rj < rj+l for 1 <_ j < q is not equal to 
p + q = IRI + ISI, but  rather to IRI + ISI - In(R, S)l  
where H(R, S)  = {r E RIr > sp} U {s E SI s > rq} is the 
set of  elements of  R (and S) greater than all elements in 
S (and R). 

PROPOSITION 5. The average number of comparisons 
C(L, R) of the type y(v(L)) ? y(v(R)) in Algorithm 2 is 
equal to H,+I + nm+l --  2, where n = ILl, m = IRI. 

PROOF. Let H(L, R) represent the union of  points in 
RB (L) having a y coordinate greater than g together 
with points in LB (R) greater than d; here g(resp, d) is 
the point in LB (R) (resp. RB (R)) having the largest y 
coordinate. I f y ( d )  < y(g), we have H(L, R) C_ LB (R), 
else H(L, R) C_ RB (L). In both cases, C(L, R) = 
IRB (L)I + ILB (R)I - I/~(L, R)I. 

To find another expression of  C(L, R), we remark 
that, if d < g, then C(L, R) = [ RB (L) I + I LB (CONS(d, 
R))[ - 1; reestablishing symmetry yields the formula 
C(L, R) = I RB (CONS(L, g))l + [LB (CONS(d, R)) I - 
2. The average value H,+~ + Hm+l -- 2 follows from the 
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Fig. 13. The steps of  bijection T----> 0(T) in the proof of  Proposition 4; 
here path(l,  n, T) = (1, 3, 7, 9) and B (O(T)) = (8, 2, 1, 4). 

T =  

Here, we limit ourselves to describing and analyzing 
the insertion procedure INSERT(CT, p) which adds 
point p to the Cartesian tree CT. If  p has a y value 
y(p)  <y(v (CT))  less than that of the root of CT, INSERT 
merely cuts CTat  x(p)  to yield (L, R) = CUT(CT, x(p)); 
the result S of insert is then S = (L, p, R). I fy (p )  > 
y(v(CT)),  we search for the largest subtree Q of CT, with 
root on path(l, x(p)),  CT)  for which y(p)  < y(v(Q)), in 
which case we insert p in Q as described in the previous 
case. 

<3 ,3  > < 8 , 2 >  

J \  / \  
<1,6 > <5 ,7>  <7, .5>  <9 ,4  > 

\ / 
- :2 ,8  > < 4 , 9  > 

Algorithm 3 (Insertion o f p  in the Cartesian tree CT) 

proc S *--- INSERT(CT, p) 
Cartesian tree S, CT, L, R; point p; 
if CT = O then S *-- (0,  p, 0 )  
elsify(p) <y(v(CT))  then (L, R) * -CUT(CT,  x(p)); S ,-- (L,p ,  R) 
elsif x(p) < x(v( CT)) then S , -  ( INSERT(I(  CT),p) ,  v( CT), r( CT) ) 
else S *-- (I(CT), v(CT), INSERT(r(CT), p)) 
fi 

fproc INSERT. 

CUT(C~(P), 4) = (L, R) with L = and R = 

/ " ' \  / ' " \  
<1 ,6>  4 ,9>  < 5 , 7 >  <8 ,2  > 

\ / \  
<8 ,8>  < 7 , 5 >  <9,4  > 

t p =  
4 

/ 
7 \ 

9 

R p =  
2 

/ \  
8 3 / \  

6 5 

O(T) = 

/ ' \  
2 4 

/ \  / 
8 3 7 

/ \  \ 
6 5 9 

assumption that all (%m) resulting order equivalence 
trees are equally likely, and we apply Proposition 3. U 

The preceding analysis of the number of comparisons 
C(L, R) in the algorithm CONS(L, R) illustrates an 
interesting point: This quantity has been analyzed geo- 
metrically, i.e., it has been shown to correspond to some 
intrinsic (static) parameter, expressed in terms of L, R, 
and CT = CONS(L, R). A more computational and 
naive approach to the analysis of this parameter can 
easily lead to quite complicated formulas, as well as yield 
a weaker result. We make other uses of the method of 
geometric analysis of algorithms throughout this paper. 

4. Applications to Searching 

4.1 Two-Dimensional Searching 
Cartesian trees (Section 3.1) are a natural data struc- 

ture for representing plane sets and performing various 
kind of searches. Natural procedures for MERGE, 
SEARCH, SEARCHRANGE, and EXTRACT can be 
designed and geometrically analyzed. 

23s 

This algorithm involves Cy(CT, p) comparisons be- 
tween y coordinates y(p)  ? y(v(CT))  and Cx(CT, p) 
comparisons between x coordinates, either of the type 
x(p)  ? x(v(CT))  or occurring in the call to CUT(CT, 
x(p)). Comparisons Cy are equal to the depth o f p  in the 
result; using Proposition 4 and summing yields 2 
(1 + 1/n) Hn - 4. 

PROPOSITION 6. The average number of  x comparisons 
Cx in Algorithm 3 I N S E R T  is 2Hn - 1, where n = ISI is 
the size of  the result. The probability that Cx = k is tn, k. 

PROOF. The assumptions in this analysis are that S 
is a random element of Tn and that p can be any of the 
n element of S, with equal probability. Let Tp be the 
subtree of root p in S. Our parameter Cx is equal to 
Cx = Ipath(1, p, S) I + IRB(I(T,))I + ILB(r(T,))I (see 
Figure 14). 

In order to analyze this parameter, we generalize 
bijection 0 of Proposition 4 and construct a bijection Op 
which exchanges C~ with path(l, n, 0,(S)). Bijection 0 is 
the special case p = 1. 

The easiest way to describe bijection 09 is to consider 
the permutation o, = J - I ( S )  constructed by visiting S 

Fig. 14. An example of  application of  bijection 03. 

S =  

path(l, 3, S) = (1, 3) 
LB (r(Ta)) = (7, 9) 
RB (l(T3)) = (6, 8) 

Cx(S, 3) = 6 

p = 3, 03(S) = 

z \  3 

path(l, 9, 03(S)) 
= ( 1 , 5 , 6 , 7 , 8 , 9 )  
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Fig. 15. Binary Search Tree and Binary Search Tree with Arrival Time Associated with S = (22, 48, 13, 97, 35, 3, 17, 5, 53). 

BST (S) BSTWAT (S) 

in symmetric order; in the example of  Figure 3, os = 
(6 8 3 9 7 1 5 2 4). Let os = (o(1), . . . ,  tr(n)) and define 
o' = 6p(as) = (o'(l) . . . . .  o' (n)) by the rules: 

(1) tr'(i) = o(0 i f fo(0  < p .  
(2) a'(0 = o(/) - 1 iff o(t) > p. 
(3) o'(l) = n iff o(0 = p. 

We then define 0 , (S )  = ~-(Op(os)) as the binary 
tournament associated with o' = 0,(o~). 

The binary tournament 0 , (S )  has the same shape as 
S, except for the subtree T, in which the two branches 
RB(I(Tp)) and LB(r(Tp)) are mapped into path(root, n, 
O,( Tp) ). 

s op IS) 

8p 

Tp 

The elements for a precise justification of  this state- 
ment are given in the proof  of  Proposition 4. 

Since parameter Sx has the same distribution as 
path(l,  n, Op(S)), the result follows from Proposi- 
tion 3. [3 

4.2 Binary Search Trees 
Let S = (s1 . . . . .  sn) be an ordered sequence S E R ~. 

With such a sequence can be associated the Cartesian 
tree T(P)  where P = {(si, i) 11 _< i _< n}, which we call 
binary search tree with arrival time (BSTWAT) of  S. The 
x part of  T(P)  is the usual binary search tree associated 
with S (see, for example, Knuth [13]); t h e y  part o f T ( P )  
specifies the rank of  each element in sequence S (see 
Figure 15). 

Traditional algorithms SEARCH, INSERT, and EX- 
TRACT are described and analyzed by Knuth [13]; a 
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complete geometrical treatment of  these analyses is pro- 
vided by Fran~on [9]. In this paper, we limit ourselves to 
presenting an algorithm for M E R G I N G  two binary 
search trees, which is apparently original. 

The algorithm for merging the two binary search 
trees G and D considers the label x = v(D) at the root of  
D; using CUT, it produces (L, R) = CUT(G, x) and 
proceeds recursively to merge L with I(D), then R with 
r(D). A precise description of  M E R G E  is given in Al- 
gorithm 4. 

Algorithm 4 (An algorithm for merging the two binary search trees G 
and D, producing the binary search tree S for result) 

proe S ~-- MERGE(G, D) 
binary search tree S, G, D, L, R; 
i fD = Othen S ~ G 

else (L, R) ~ CUT(G, v(D)); 
S ~ (MERGE(L, I(D)), v(O), MERGE(R, r(D))) 

fi 
fprae MERGE. 

In this algorithm, comparisons occur during the call 
to CUT(G, v(D)). 

PROPOSITION 7. I f  G and D are independent random 
binary search trees o f  respective sizes n and m, the num- 
ber o f  comparisons in M E R G E ( G ,  D)  is equal to 
2(n + m + 1)Hn+m - 2(n + 1)Hn - 2(m + 1)Hm. 

PROOF. To carry out the analysis, we consider two 
BSWATs, G' and D', having the same x part as G and 
D, respectively. T h e y  labels in D'  are {1, 2 . . . . .  m} and 
those in G' are {m + 1 . . . . .  m + n}. We can look at 
M E R G E  as a succession of  insertions (Algorithm 3) of  
the elements pl, . . . ,  p,~ of  D', in order of  increasing x- 
value into G~ = Go . . . . .  G" = G~_, + pi . . . . .  

During the insertion of  the ith element, we only need 
to count the number of  comparisons X~ of  pi with 
elements located below in the resulting tree G'. By 
Proposition 6, we know that path(l,  pi, G~) + Si  = 
path(I, n, G[), which combined with Proposition 4 yields 
X i  = 2 n n + i  - 2 t l .  

The result follows by summing, and by use of  the 
i d e n t i t y  ~,,l<_i<_k Hi = (k + 1)nk -- k. [3 

This MERGE(G,  D) procedure reduces to the clas- 
sical INSERT (Knuth [13]) at the leaves in the case 
I G I = 1; in the case I D I = 1, we obtain the procedure of  
insertion at the root discovered by Stephenson [ 15]. When 
G and D are roughly of  equal size, say G = O(n) and 
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Fig. 16. The Sequence S = (22, 48, 13, 97, 35, 3, 17, 5, 53) and Its Position Tournament Representation ~(S). 

D = O(n), then Proposi t ion 7 shows that  M E R G E  is 
pe r fo rmed  in average linear time O(n). Note  that  this 
program,  unlike the other  ones presented in this paper ,  
requires the use of  a stack in its nonrecursive description. 

5. A p p l i c a t i o n s  to  L i n e a r  L i s t s  

A data  structure for represent ing linear lists allows 
one to manipu la te  sequences (or words)  (S1 . . . . .  Sn ) 

/R*, where  the primit ive opera t ions  al lowed are 

(1) S E A R C H ,  I N S E R T ,  or D E L E T E  the kth e lement  
of  a list; 

(2) C O N C A T E N A T E  two lists or  C U T  a list in kth  
position. 

We propose here to use a data  structure derived f rom 
Cartesian trees, al lowing very s imple a lgori thms for each 
of  these primit ives to have  an average  execut ion t ime o f  
O(log n), where  n is the size o f  the lists manipula ted .  

To  represent  the list S = (Sl . . . . .  s~), we use the 
position tournament ~ ( S )  defined by  the rules: 

(1) ~ ( A )  = ~5. 
(2) I f s i  = mina<j<n{sy} ,  then ~(S l  . . . . .  s~) = 

# ( ( S a ,  . . .  , , ' - 1 ) )  " . . . ,  S n ) )  

In other  words, ~ ( S )  is i somorphic  to the b inary  
tou rnamen t  3 - ( S )  of  S (see Section 3.2), except that  each 
labe lp i  in ~ ( S )  is fo rmed  by the pa i rp i  = (xi, ri), where 
x~ is the value of  the ith e lement  o f  S and  ri - 1 is the 
size of  the left subtree l(Ti) of  root pi  in ~ ( S ) .  

I f p  = (x, r) is a label in # ( S ) ,  we call r ank(p )  = r 
the size of  its left subtree increased by l (see Figure 
16). 

Searching for the kth e lement  in such a structure is 
i somorphic  to searching a b inary  search tree: First con- 
sider the rank  r o f  the root; if  r > k, we search the kth  
e lement  of  the left subtree; i f r  = k, the root is the answer; 
i f  r < k, we search the (k - r)th e lement  o f  the right 
subtree (see Algor i thm 5). 
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Algorithm 5 (Searching for the kth element of position tree P) 

proc X <-- SEARCH(P, K) 
real X; position tournament P; integer K; 
comment 1 _< K _  < Iel; 
if K = rank(v(P)) then X <-- x(v(P)) 
elsif K < rank(v(P)) then X ,,-- SEARCH(I(P), K) 
else X <-- SEARCH(r(P), K - rank(v(P))) 
fi 

fproc SEARCH. 

Analysis  o f  this a lgor i thm is a s t ra ightforward con- 
sequence o f  the previous  results. 

PROPOSITION 8. The number C o f  comparisons in 
executing Algorithm 5, X <-- S E A R C H ( P ,  K )  where 
IPI = n is a s  f o l l o w s :  

(0 i l k  = 1, then average(C)  = Hn and prob(C = k) = 
1/n!.  sn, k; 

(ii) i f  X is the largest x value in P, then average(C)  = 
2Hn - 1 and prob(C = k) = 1/n!.t~,k = 2k/n! • 
Sn-- l ,k--1;  

(ii 0 the average value o f  C in searching f o r  all values 
l < _ k < _ n i s 2 ( l  + 1 / n ) H n -  3. 

PROOF. Condi t ions  (i) and  (ii) are mere  rephrasing 
o f  Proposi t ions 3 and 4. Note  that  the analysis can be 
refined in case (ii): the n u m b e r  of  compar i sons  for which 
K < rank(v(P)) ,  i.e., the n u m b e r  i o f  executions o f  
instruction X ~ S E A R C H ( r ( P ) ,  K - rank(v(P))  has 

k s ( i )  ~-1, k-1 for distribution. 
T o  compute  the average  value o f  C in case (iii), we 

note that  it is equivalent  to search P for each o f  its x 
values; by  Proposi t ion 4, searching for the j t h  value 
involves 2Hi - 1 compar i sons  on the average,  thus the 
result (1/n)~l<_j<_n (2Hi - 1). [3 

Algor i thms for cutt ing a posit ion tou rnamen t  P in 
posit ion K, with 0 _< K _< [ P I, and  the inverse opera t ion  
of  concatenat ion,  are s t ra ightforward adapta t ions  (ho- 
m o m o r p h i s m s  to be precise) o f  C U T  and C O N S  Algo- 
r i thms 1 and  2. Figure  17 illustrates these a lgori thms on 
an example.  

Similarly, insertion in a posit ion tou rnamen t  is a 
direct adapta t ion  of  Algor i thm 3, the analysis o f  Propo-  
sition 6 remaining  valid. 

Algor i thm 6 gives a comple te  descript ion o f  
(X, Q) ~ E X T R A C T ( P ,  K)  which extracts the kth 
e lement  X(1 _< k _ [PD o f  posit ion tou rnamen t  P and  
yields the posit ion tou rnamen t  Q for result. 
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Fig. 17. Operations CUT and CONS on Position Tournaments. 
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P ~ CONS(L, R) 

(L, R) ~ CUT(P, 5) 

Algorithm 6 (Extraction of  the kth element of  position tournament P) 

proe (X, Q) ~-- EXTRACT(P, K) 
real X; position tournament P, Q, S; integer K; 
comment 1 _< K_< [p[; 
if K = rank(v(e)) then X ,-- x(v(P)); Q ~-- CONS(I(P), r(P)) 
elsif K < rank(v(P)) then (X, S) ~-- EXTRACT(I(P), K); 

Q ,-- (S, (x(v(P)), rank(v(P)) - 1), r(P)) 
elsif K > rank(v(P)) then (X, S) ~-- EXTRACT(r(P),  K -  rank(v(P))); 

Q ~-- (l(P), v(P), S) 
fi 

fproc EXTRACT. 

This algorithm performs two types of comparisons: 
Rank comparisons K ? rank(v(P)) are analyzed in Prop- 
osition 8; as for x comparisons that take place during 
recursive calls to CONS(/(P), r(P)), an analysis by Fran- 
ton et al. [10] shows that the average value of this 
parameter is 1 - (2Hn/n) + 1/n, where n = Iel. 

6. Other Applications and Conclusions 

Other interesting algorithms use binary tournaments 
as their underlying combinatorial structure. The most 
widely used is the sorting algorithm Quicksort of  Hoare 
[12], which has been completely analyzed by Sedgewick 
[14]. The key to Quicksort is a partitioning algorithm, 
whose successive applications implicitly constructs a bi- 
nary search tree; the combinatorial tools shown in this 
paper can be readily applied to confirm the analysis of 
Sedgewick [14]. 

Another application has been discovered by Fran~on 
et al. [10] who propose to represent priority queues (see 
Knuth [13] for a definition) by binary toumaments. The 
key to their result is a data structure, the pagoda, which 
is an upside-down representation of binary tournaments; 
the discovery of pagodas arises from a careful inspection 
of the CONS Algorithm 2, showing that a bottom-up 
merging of the sorted sequences RB(L) and LB(R) is 

7,38 

more efficient than the straightforward top-down method 
of this paper. 

To conclude, we note that a careful use of the same 
combinatorial structure, namely, binary tournaments, 
leads to a wide variety of algorithms and data structures, 
for sorting (quicksort), representing linear lists (position 
tournaments), and priority queues (pagodas). These al- 
gorithms have a definite practical significance, since each 
of them provides the fastest average time solution known 
to its specific problem. 

Our contention here is that a close examination of 
the underlying combinatorial structure (in our case per- 
mutations) brings up interesting new algorithms and data 
structures; it also brings a surprising amount of unity to 
a field which we think badly needs it. One worthwhile 
goal in that respect would be to apply the same kind of 
work to another family of algorithms, including digital 
search tree, h-code, and radix sorting (as described and 
analyzed by Knuth [13]) and to bring to light the under- 
lying combinatorial structure common to so many of  
these algorithms. Despite the enormous number of inter- 
esting solutions known for solving basic data manipula- 
tion problems, we believe that most of these solutions 
ultimately rest on a relatively small number of  different 
combinatorial structures. A progress in our understand- 
ing of these questions should drastically affect the 
way in which we discover and explain the fundamental 
algorithms, as catalogued by Knuth [13] and Aho et al. 
[1]. 

7. Bibliographical Note 

An account of methods in combinatorial geometry is 
given by Foata and Schutzenberger [7], which has had 
great influence on the present work. 

The classical results of Section 2 of this paper can be 
found, for example, in Comtet [3]. Construction of the 
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binary tournament (Section 3) associated with a permu- 
tation is used by Foata and Schutzenberger [7] and Foata 
and Strehl [8]. Various algorithmic uses of  the construct 
can also be found in Burge [4] and Viennot [16]. 

Binary search trees are discussed in particular by 
Knuth [13] and Fran~on [9]. 

The analysis of  position tournament algorithms is 
implicit in Fran~on et al. [10], where application to 
priority queues is discussed. Balanced tree representa- 
tions of  linear lists are described by Aho et al. [1], Guibas 
et al. [11], and Brown and Tarjan [2], 

Finally, a much more comprehensive treatment of  
combinatorial methods in algorithm design and analysis 
is attempted by Flajolet et al. [5]. 
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Fran~on, and G. Viennot. The main ideas presented in 
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15-17 April 1980 

• Annual Conference on Computer Graphics, De- 
troit, Mich. Sponsor: Engineering Society of Detroit 
in cooperation with ACM. Conf. chin: Fred Lan- 
ghorst, Transportation Systems Center, General Mo- 
tors Technical Center, Warren, MI 48090; 313 575- 
8311. 

29-30 April 1980 
Sixth Illinois Conference on Medical Informa- 

tion Systems, Champaign, Ill. Sponsors: University 
of Illinois, Regional Health Resource Center, Society 
for Advanced Medical Systems, Society for Com- 
puter Medicine, University of Missouri Health Care 

239  

Technology Center. Contact: Saundra Wheeler, 1408 
W. University, Urbana, IL 61801. 

30 April 1980 
Capacity Planning and Shop Floor Control, Syr- 

acuse, N.Y. Sponsors: ACM Syracuse Chapter, 
American Production and Inventory Control Society 
Syracuse Chapter. Contact: Michael Busse, Anaren 
Microwave Inc., 185 Ainsley Dr., Syracuse, NY 
13205 or Hamilton Armstrong, Carrier Corp., Box 
4895, Syracuse, NY 13221. 

6-10 May 1980 
Canadian Association for Information Science 

Annual Conference, Toronto, Ont., Canada. Sponsor: 
CAIS. Contact: Ilse Cockburn, 36 Brookdale Ave., 
Toronto, Ontario, Canada M5M IP3. 

15-16 May 1980 
NYU Symposium on Distributed Processing 

Practice, New York City. Sponsor: Graduate School 
of Business Administration of New York University. 
Contact: CA1S Dept., 700 Merrill Hall, 90 Trinity 
Place, New York, NY 10006; 212 285-6120. 

3-6 June 1980 
International Conference on Boundary and In- 

terior Layers--Computational and Asymptotic 
Methods (BAIL I), Dublin, Ireland. Sponsor: Nu- 
merical Analysis Group. Contact: BAIL I Confer- 
ence, 39 Trinity College, Dublin 2, Ireland. 

16-19 June 1980 
Thirteenth Annual Conference of Association of 

Small Computer Users in Education, University of 
Tennessee, Martin. Sponsor: ASCUE. Contact: 
James Westmoreland, Computer Center, University 
of Tennessee, Martin, TN 38238; 901 587-7891. 

26-27 June 1980 
• ACM SIGPCR Seventeenth Annual Computer 
Personnel Research Conference, Boca Raton, Fla. 

OnSor: ACM SIGPCR. Conf. chm: Elias M. Awad, 
liege of Business and Organizational Sciences, 

Florida International University, Miami, FL 33199; 
305 552-2791. 

30 June 1980 
Panel on Software Metrics, Washington, D.C. 

Sponsors: Yale University and Office of Naval Re- 
search. Contact: ONR Software Metrics Panel, Attn. 
Alan J. Perlis, Computer Science Dept., Yale Uni- 
versity, 2158 Yale Station, New Haven, CT 06520. 

19-21 August 1980 
• National Artificial Intelligence Conference, Palo 
Alto, Calif. Sponsor: American Association for Ar- 
tificial Intelligence in cooperation with ACM SI- 
GART. Conf. chm: J. Marty Tenenbaum, SRI In- 
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ternational, 333 Ravenswood Ave., Menlo Park, CA 
94025; 415 326-6200 x4167. 

3-5 September 1980 
19th Annual Lake Arrowhead Workshop on 

Office Information Systems, near Los Angeles, Calif. 
Sponsor: IEEE-CS. Workshop co-chm: Clarence A. 
Ellis and Gary J. Nutt, Xerox PARC, 3333 Coyote 
Hill Road, Palo Alto, CA 94304. 

15-17 October 1980 
V ICCRE, Fifth International Conference on 

Computers in Chemical Research and Education, 
Toyohashi, Japan (a post congress symposium of 
Seventh International CODATA Conference, 
Kyoto, Oct. 8-11). Contact: S. Sasaki, School of 
Materials Science, Toyohashi University of Tech- 
nology, Tempaku, Toyohashi, Japan 440. 

2-5 November 1980 
Fourth Annual Symposium on Computer Appli- 

cations in Medical Care, Washington, D.C. Sponsor: 
The George Washington University Medical Center. 
Prog. chm: Joseph T. O'Neill, National Center for 
Health Services Research, Center Building, Room 8- 
30 #1, 3700 East-West Highway, Hyattsville, MD 
20782; 301 436-8946. 

30 November-2 December 1980 
• Micro 13--13th Annual Workshop on Micropro- 
grannning, Colorado Springs, Colo. Sponsors: ACM 
SIGMICRO, IEEE-CS. Conf. chin: G.R. Johnson, 
Dept. of Engineering Science, Colorado State Uni- 
versity, Fort Collins, CO 80523; 303 491-7585. 

3-8 December 1980 
• 1980 Winter Simulation Conference, Orlando, 
Fla. Sponsors: ACM SIGSIM, ORSA, TIMS, AIEE, 
SCS, U.S. Dept. of Energy. Conf. chm: Paul F. Roth, 
U.S. Dept. of Energy, Mail Stop 4530, 12th and 
Penn, Washington, DC 20461; 202633-9629. 

3-5 February 1981 
• Fifth Berkeley Workshop on Distributed Data 
Management and Computer Networks, Emeryville, 
Calif. Sponsor: Lawrence Berkeley Laboratory in 
cooperation with ACM. Conf. chm: Rowland R. 
Johnson, Lawrence Berkeley Laboratory, University 
of California, Berkeley, CA 94720; 415 486-6321. 

19-22 April 1981 
• Computing for Development, Bangkok, Thai- 
land. Sponsors: Carl Duisberg Gesellschaft, Asian 
Institute of Technology in cooperation with ACM 
SIGBDP, SIGCAS, SIGMOD, SIGSIM. Conf. chm: 
M. Nawaz Sharif, Div. of Computer Applications, 
Asian Institute of Technology, P.O. Box 2754, Bang- 
kok, Thailand. 
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