
Received 9/78; revised 6/79; accepted 1/80

References
!. Aho, AV., Hopcroft, J.E., and Ullman, J.D. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass.,
1974.
2. Bentley, J.L. Multidimensional binary search trees used for
associative searching. Comm. ACM 18, 9 (Sept. 1975), 509-517.
3. Bentley, J.L. Divide and conquer algorithms for closest point
problems in multidimensional space. Unpublished Ph.D. dissertation,
Univ. of North Carolina, Chapel Hill, N.C., 1976.
4. Bentley, J.L. Decomposable searching problems. Inform. Proc.
Letters 8, 5 (June 1979), 244-251.
5. Bentley, J.L., and Friedman, J.H. Algorithms and data structures
for range searching. Comptng. Surv. 11, 4 (Dec. 1979), 397-409.
6. Bentley, J.L., Kung, H.T., Schkolnick, M., and Thompson, C.D.
On the average number of maxima in a set of vectors and
applications. J. ACM 25, 4 (Oct. 1978), 536-543.
7. Bentley, J.L., and Maurer, H.A. Efficient worst-case data
structures for range searching. To appear in Acta lnformatica
(1980).
g. Bentley, J.L., and Shamos, M.I. Divide and conquer in
multidimensional space. In Proc. ACM Symp. Theory of Comptng.,
May 1976, pp. 220-230.
9. Bentley, J.L., and Shamos, M.I. A problem in multivariate
statistics: Algorithm, data structure, and applications. In Proc. 15th
Allerton Conf. Communication, Control, and Comptng., Sept. 1977,
pp. 193-201.
10. Blum, M., et al. Time bounds for selection. J. Comptr. Syst. Sci.
7, 4 (Aug. 1972), 448--461.
i l . Dobkin, D., and Lipton, R.J. Multidimensional search problems.
SIAM J. Comptng. 5, 2 (June 1976), 181-186.
12. Fredman, M. A near optimal data structure for a type of range
query problem. In Proc. 1 lth ACM Symp. Theory of Comptng.,
April 1979, pp. 62-66.
13. Fredman, M., and Weide, B.W. On the complexity of computing
the measure of O [ai, bi]. Comm. ACM 21, 7 (July 1978), 540-544.
14. Friedman, J.H. A recursive partitioning decision rule for
nonparametric classification. 1EEE Trans. Comptrs. C-26, 4 (April
1977), 404--408.
15. Friedman, J. H. A nested partitioning algorithm for numerical
multiple integration. Rep. SLAC-PUB-2006, Stanford Linear
Accelerator Ctr., 1978.
16. Knuth, D.E. The Art of Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Mass., 1973.
17. Kung, H.T., Luccio, F., and Preparata, F.P. On finding the
maxima of a set of vectors. J. A CM 22, 4 (Oct. 1975), 469-476.
18. Lee, D.T., and Wong, C.K. Qintary trees: A file structure for
multidimensional database systems. To appear in ACM Trans.
Database Syst.
19. Lipton, R., and Tarjan, R.E. Applications of a planar separator
theorem. In Proc. 18th Symp. Foundations of Comptr. Sci., Oct.
1977, pp. 162-170.
20. Lueker, G. A data structure for orthogonal range queries. In
Proc. 19th Symp. Foundations of Comptr. Sci., Oct. 1978, pp.
28-34.
21. Monier, L. Combinatorial solutions of multidimensional divide-
and-conquer recurrences. To appear in the J. of Algorithms.
22. Murray, J.A. Lieutenant, Police Department--The Complete Study
Guide for Scoring High (4th ed.). Arco, New York, 1966, p. 184,
question 3.
23. Reddy, D.R., and Rubin, S. Representation of three-dimensional
objects. Carnegie-Mellon Comptr. Sci. Rep. CMU-CS-78-113,
Carnegie-Mellon Univ., Pittsburgh, Pa., 1978.
24. Saxe, J.B. On the number of range queries in k-space. Discrete
Appl. Math. 1, 3 (Nov. 1979), 217-225.
25. Shamos, M.I. Computational geometry. Unpublished Ph.D.
dissertation, Yale Univ., New Haven, Conn., 1978.
26. Shamos, M.I. Geometric complexity. In Proc. 7th ACM Symp.
Theory of Comptng., May 1975, pp. 224-233.
27. Weide, B. A survey of analysis techniques for discrete algorithms.
Comptng. Surv. 9, 4 (Dec. 1977), 291-313.
28. Willard, D.E. New data structures for orthogonal queries.
Harvard Aiken Comptr. Lab. Rep., Cambridge, Mass., 1978.
29. Yao, F.F. On f'mding the maximal elements in a set of planar
vectors. Rep. UIUCDCS-R-74-667, Comptr. Sci. Dept., Univ. of
Illinois, Urbana, July 1974.

229

P r o g r a m m i n g R. R i v e s t

T e c h n i q u e s E d i t o r

A Unifying Look
at Data Structures
Jean Vuillemin
University of Paris-South

Examples of fruitful interaction between
geometrical combinatorics and the design and analysis
of algorithms are presented. A demonstration is given
of the way in which a simple geometrical construction
yields new and efficient algorithms for various
searching and list manipulation problems.

Key Words and Phrases: data structures,
dictionaries, linear list, search, merge, permutations,
analysis of algorithms

CR Categories: 4.34, 5.24, 5.25, 5.32, 8.1

1. Introduction

W h e n e v e r two c o m b i n a t o r i a l s t ruc tu res are c o u n t e d
by the s a m e n u m b e r , the re exis t b i j ec t ions (o n e - o n e

m a p p i n g s) b e t w e e n the two s t ructures . O n e g o a l o f geo-

me t r i ca l c o m b i n a t o r i c s (see, for e x a m p l e , F o a t a a n d

S c h u t z e n b e r g e r [7]) is to expl ic i t ly cons t ruc t such b i jec-

t ions. T h i s is b r i n g i n g the f ie ld v e r y close to c o m p u t e r

science: O n e can r e g a r d c o m b i n a t o r i a l r ep r e sen t a t i ons o f

r e m a r k a b l e n u m b e r s as e q u i v a l e n t d a t a s t ruc tures ; ex-

pl ici t b i j ec t ions b e t w e e n such r e p r e s e n t a t i o n s p r o v i d e

c o d i n g a n d d e c o d i n g a l g o r i t h m s b e t w e e n the s t ructures .

Ea r l i e r i nves t iga t ions a l o n g these l ines are 1;eported in

F r a n ~ o n et al. [10] a n d F l a j o l e t et al. [6].

T h i s p a p e r s h o u l d be r e g a r d e d as an i n t r o d u c t i o n to

us ing m e t h o d s o f g e o m e t r i c a l c o m b i n a t o r i c s in the f ie ld

o f a l g o r i t h m des ign a n d analysis . F o r this pu rpose , we

c o n s i d e r r e p r e s e n t a t i o n o f n! as a r u n n i n g e x a m p l e a n d

d e m o n s t r a t e h o w we are led to d i s c o v e r i n g n e w a n d

ef f ic ien t d a t a s t ruc tures a n d a l g o r i t h m s for so lv ing var -

ious d a t a m a n i p u l a t i o n p r o b l e m s .

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported by the National Center for Scientific
Research (CNRS), Paris, under Grant 3941.

Author's address: J. Vuillemin, Laboratory for Information Re-
search, Building 490, University of Paris-South, 91405 Orsay, France.
© 1980 ACM 0001-0782/80/0400-0229 $00.75.

Communications April 1980
of Volume 23
the ACM Number 4

In Section 2 we review representat ions o f n! by per-
mutat ions, comple te n×n diagrams (rook diagrams), and
subdiagonal tables (Lehmer code, inversion table), and
we follow the var ious appearances o f Stifling number s
in these representat ions.

In Section 3 we study the tree representat ions o f n!,
showing the combina tor ia l significance o f the pa i r o f
inverse a lgori thms C U T and C O N C A T E N A T E .

In Section 4 we put the tree representat ions to an
original use for solving two-dimens iona l searching prob-
lems. We also present a new algor i thm for merging
b inary search trees.

In Section 5 we app ly the basic construct ion to
represent ing l inear lists. The conceptua l simplici ty o f the
a lgor i thms involved makes them easy to p rogram, and
their average execut ion t ime is faster than that o f any
l inear list representat ion known to the author .

Fig. 1. A permutation e E Sg.

0 = (5 7 3 9 6 1 4 2 8)

Fig. 2. Two order equivalent sequences S and S' and the permutation
o representing their equivalence class.

o = (5 7 3 9 6 1428)
S = (22, 48, 13, 97, 35, 3, 17, 5, 53)
S' = (1.7, 2.8, -0.3, 5.1, 2.3, -2.1, 0.4, -1.2, 3.2)

Fig. 3.
S=(2248 13 97 353 17553)

LRMIN(S) = (22 13 3)
RLMIN(S) = (3 5 53)

LRM(S) = (22 48 13 97 3)
MIN(S) = (22 13 3 5 53)

LRMAX(S) = (22 48 97)
RLMAX(S) = (97 53)

RLM(S) = (97 3 5 53)
MAX(S) = (22 48 97 53)

2. Classical Representations of Factorial

2.1 Permutations and Sequences
Let [n] denote the set { 1, 2 n}. Apermutation is

a bijection a: [n] ---> [n]; we write a E S,, where S,, is the
symmet r ic group over n objects. A pe rmuta t ion o E S ,
can be represented by a word a(1), o(2) o(n) o f
length n over [n]*; the bij ective p roper ty o f o is expressed
by i # j ~ o(i) # a(j) for 1 _< i,j<_ n (see Figure 1).

Permuta t ions appea r natura l ly in the analysis o f al-
gor i thms (decision trees) which can only pe r fo rm com-
parisons on their inputs. Such a lgor i thms have exact ly
the same behav ior on sequences o f inputs sharing the
same relative ordering. To be precise, let S = (Sl sn)
and S ' = (s~ s ') (with si, si' E 1R for 1 _ i < n) be
two sequences o f length n over a totally ordered se t /R .
We say that S and S ' are order equivalent i f si < sj ¢~
sl < sj for 1 _< i # j --< n (see Figure 2).

Permuta t ions can thus be regarded as equivalence
classes o f sequences under order equivalence.

Let S E /R" be a sequence o f length IsI = n. We
define the left-to-right minima o f S as the subsequence
L R M I N (S) = (sil, s~ sik) m a d e o f e lements s~ ~ S
such that si < sj for 1 _< j < i (see Figure 3).

Go ing f rom right to left and changing the order, we
can define the four sequences L R M I N , R L M I N ,
L R M A X , and R L M A X . We also consider L R M =
L R M I N U L R M A X , R L M = R L M I N U R L M A X ,
M I N = L R M I N U R L M I N , and M A X = L R M A X O
R L M I N .

An explicit bijection o f Foa t a and Schutzenberger [7]
shows that the n u m b e r o f pe rmuta t ions o ~ S , such that
I L R M I N (o) I = k is equal to the n u m b e r o f pe rmuta t ions
o E Sn having k cycles.

2.2 Cartesian Representations
A complete n-diagram is a set D = {(xi, yi)] 1 ~ i <_

n}, where (x i l l _< i_< n} = {yj[1 _ j _ n} = In] (see
Figure 4).

230

Fig. 4. The complete n-diagram associated with (5 7 3 9 6 1 4 2 8).

A

1
--]

I -
v

It is convenient to represent n -d iagrams on an
nXn plane grid with one point on each line and each
column.

With each pe rmuta t ion o E S, , we can associate the
d iag ram Do = ((i, o(0) [1 --< i _< n); conversely, with each
d iag ram D --- {(xi, y i) [l --< i _< n) we can associate the
pe rmuta t ion o E Sn, where o(x3 = yi. This establishes a
na tura l bijection between pe rmuta t ions Sn and comple te
n-d iagrams D,.

The p lane representa t ion o f comple te d iagrams pos-
sesses eight na tura l symmetr ies , which cor respond to the
following bijections S,, ~ S, , defined, for o =
(o(1) o(n)), by

(1) a = (o(n) o (l))
(2) - o = (n + 1 - o (1), . . . , n + 1 - o(n))
(3) o - ' = (o - ' (1) o- l (n)) .

and their composi t ions (see Figure 5).
Again, n -d iagrams appea r in the analysis o f algo-

r i thms as equivalence classes o f sets o f points in the
plane: Two sets o f points P = {(x~, yj) [1 <_ i < n, xi, yi
E R} and P ' are order equivalent if, for all 1 _< i, j _< n,
(xi < xj i f f x / < x]) and (yi < flj i f fy / ' < yj) .

Wi th each point p E D o f an n -d iagram D, we
associate the n u m b e r L L (p) = I { (xi, yi) [xi < x, yi < y,
(xg, yi) ~ D, (x, y) = p E D}[o f points in D located in
the lower left rectangle under and to the left o f p; the

Communications April 1980
of Volume 23
the ACM Number 4

Fig. 5. A permutation and its "natural" symmetries.

0 = (5 7 3 9 6 1 4 2 8) o - ~ = (6 8 3 7 1 5 2 9 4)
6 = (8 2 4 1 6 9 3 7 5) f i - ~ = (4 9 2 5 1 7 3 8 6)

- 0 = (5 3 7 1 4 9 6 8 2) o - 1 = (4 2 7 3 9 5 8 1 6)
- 6 = (2 8 6 9 4 1 7 3 5) 6 - ~ = (6 1 8 5 9 3 7 2 4)

Fig. 6. The n-diagram associated with o = (5 7 3 9 6 1 4 2 8) and the
four inversion tables LLo, LRo, ULo, and URo.

^ I
L L o = (0 , 1 , 0 , 3 , 2 , 0 , 2 , 1 , 7)
U L 0 = (0 , 0 , 2 , 0 , 2 , 5 , 4 , 6 , 1)
L R o = (4 , 5 , 2 , 5 , 3 , 0 , 1 , 0 , 0)
U R ~ = (4 , 2 , 4 , 0 , 1 , 3 , 1 , 1 , 0)

o f independent random variables Vl vn with 0 <_ vi <
i. The probabi l i ty that Vi = 0 is l / i , SO the average
n u m b e r o f zero elements in a subdiagonal table is 1 +
1/2 + . . . + 1/n = H~, the nth ha rmon ic number . T h e
distr ibution of this parameter , i.e., the n u m b e r o f subdi-
agonal tables of size n having k zeros, is the classical (see
Comte t [3]) Stirling number o f f irst k ind s~. k. The contri-
but ion of the ith var iable vi to the enumera t ing po lyno-
mial ~k s~, kx k is (x + i - 1) so we have

~, S~,kX k ---- X(X +1) . . . (X + n -- 1), for n -- 1. (1)
k

An immedia te consequence of the definit ion is

sn, k = (n - 1)s~-l,k + s,-a,k-1, for 1 _< k --< n,
s ~ , 0 = 0 , sn ,~= 1, s ~ , l = (n - 1)!. (2)

Fig. 7. Thesubd iagona l t ab le LL(I) LL(9) associated with
(5 7 3 9 6 1 4 2 8) .

X
X X

I×l ×
xl x x I
1 2 3 4 5 6 7 8 9

numbers UL, UR, and L R are def ined in a symmetr ica l
fashion. I f we consider the pe rmuta t ion associated with
D, the numbers LL, UL, UR, and L R represent the four
natural inversion tables (also called L e h m e r code by
Knu th [13]) o f the pe rmuta t ion associated with D (see
Figure 6).

2.3 Subdiagonal Tables
The correspondence between n-d iagrams D and

the sequence (LL(1) LL(n)) is a o n e - o n e m a p -
ping.

Wi th each n-diagram, thus permuta t ion , we associate
a sequence o f numbers LL(1) LL(n) such that 0 _<
LL(i) < i for 1 <_ i _< n. Such sequences o f numbers are
called subdiagonal tables (see Figure 7).

Note that in this correspondence, left-to-right m i n i m a
are m a p p e d into the bo t tom line (LL(i) = 0), and left-to-
right m a x i m a into the top line (LL(i) = i - 1) o f the
subdiagonal table.

Subdiagonal tables play an impor tan t role in com-
puter science: They are at the heart o f interesting sorting
algori thms (see K n u t h [13]), and they are used explicitly
or implicit ly in all the a lgori thms known to the present
author for enumera t ing permuta t ions or generat ing ran-
d o m permutat ions . They are also called inversions.

They are impor tan t for count ing purposes since a
r a n d o m subdiagonal table can be regarded as theproduct

Putt ing everything together gives the following prop-
osition.

PROPOSITION 1. Stirling numbers o f f irst k ind Sn.k
(whose average value is (l /n !) ~k ksn, k -- Hn) count:

(i) permutations o E Sn such that ILRMIN(o) I = k, or
I R L M t N (o) I = k , or I L R M A X (o) I = k , or
I R L M A X (o) I = k;

(ii) permutations o ~ Sn having k cycles;
(iii) complete n-diagrams ~ E Dn such that I {P E 8 1 L L (p)

= 0 } I = k, and similarly f o r LR, UL, and UR;
(iv) subdiagonal tables t E SDn such that I(il 1 ~ i _< n,

t(i) = 0} I = k.

F r o m the preceding definit ions and correspon-
dences, the reader will easily construct explicit o n e -
one mappings be tween the above structures, counted
by s~,k.

Going back to subdiagonal tables, we see that the
probabi l i ty that vi = 0 or vi = i - 1 is 1 for i = 1 and 2 /
i for i > 1. The average number o f elements on the bottom
or top line o f a random subdiagonal table o f size n is thus
2 H ~ - 1.

Let t~, k be the n u m b e r o f tables t ~ SDn having k
elements on either the top or the bo t tom line, i.e., k =
I {il 1 <_ i <_ n, t(i) = 0 or t(0 = i - 1)1. The enumera t ing
po lynomia l o f t~, k is directly

t~,~c k = x (2 x) . . . (2x - i - - 2) . . . (2x -- n - 2)
k

which, using (1), yields

t n , k = 2 k-1 Sn-x, k-a.

We can thus state Proposi t ion 2.

PROPOSITION 2. The numbers tn, k = 2 k-~ Sn-Lk-x
(whose average value is (l /n !) ~'k ktn, h = 2Hn - 1) count:

(t) permutations o E Sn such that [MIN(o)[= k, or

I M h S (o) l = k, or ILRM(o)I = k, or IRLM(o)I = k;
(iO complete n-diagrams ~ E Dn such that I(P ~Jl L L (p)

= 0 or UL(p) = O} I = k, etc.;
(iii) subdiagonal tables t E SDn such that I{il 1 _< i --< n,

fit) = 0 or t(i) = i - 1)1.

231 Communications April 1980
of Volume 23
the ACM Number 4

3. Tree Representation of Point Sets and Sequences

3.1 Representing a Plane Point Set by a Binary Tree
Let P = (p l pn) be a finite set of points in the

plane, represented in some Cartesian coordinate system
so tha tp i = (xi, yi) with xi, yi E IR for 1 _ i _< n.

With such a plane point set P, we associate a labeled
binary tree, called the Cartesian tree (g(P) of P by the
rules:
(1) I f P = @, then (g(P) = O, the empty tree.
(2) I f P ~ ~ , let p = p~ = (xi, yi) E P be the point o f p

having the least y-coordinate, so that 1 _< j ~ i _<
Iel ~ yj > y~ for (xj, yj) ~ P; let left(P) represent
the points in P whose x-coordinate is less than xi,
and right(P) its complement in P\{p} , so that
left(P) = ((x, y) E PI x < x~}, and right(P) =
{(x, y) E P ix > xi}. The tree ~¢(P) is defined
reeursively by the rule

,e(e) =

~(left(P)) ~(right(P))

To avoid cumbersome special cases, the above defi-
nition has assumed that different points in P have dif-
ferent x and y coordinates; should this not be the case,
ties can be broken in arbitrary ways to make this defi-
nition general (see Figure 8).

Let the x part of oK(P) be the binary tree formed from
~f(P) by only keeping for each node p = (x, y) in ~(P)
the x value of p; the ypart of ~(P) is defined in a similar
way, and we can regard ~(P) as constructed by a direct
Cartesian product of its x and y parts, which are two
labeled trees of the same shape (see Figure 9).

The characteristic properties of such labelings are:
(1) The x part of ~(P) is a binary search tree, i.e., the

xis increase as we traverse ~(P) in symmetric order
(left subtree; root; right subtree; see Knuth [13]).

(2) The y part of ~(P) is a binary tournament, i.e., the
y~s increase as we follow any path from the root to a
leaf in c~(p).

3.2 Representing a Sequence by a Binary Tree
Let S = (sl , s,} E / R " be a sequence of length

n. With such a sequence, we associate the point set P =
((1, Sl) (n, s~)} and consider the tree (g(P) (see
Figure 10).

Fig. 9. The x and y Parts of the Cartesian Tree of Figure 8.

(2 / \
5 21

2 / \ / \ 8 15 28
\ /

3 6

232

Fig. 8. The Ca~esian tree ~(P) associated with the point set P =
{(2, 22), (3, 48), (5, 13), (6, 97), (8, 35), (12, 3), (15, 17), (21, 5),
(28, 53)}.

The x part of such a tree is simply a binary tree
labeled by 1, 2 n in symmetric order. Since x and
y parts have the same underlying binary tree, it is suffi-
cient to know the y part in order to reconstruct the entire
structure.

We have thus exhibited a one-one mapping between
sequences S E / R n and binary tournaments of size n with
labels in /R. This bijection S ~ J (S) can be defined
directly, without invoking point sets:

(1) To the empty sequence A(n = 0) is associated the
empty tree ~; thus J (A) = ~.

(2) For n > 0, let i be such that si = minl_<j_<, (sj}; we
define J-(S) =

L R

where L -- @((sl si-1)) and
R = J ((S i + l , s .>) .

We call 9-(S) the tournament representation of se-
quence S ~ / R " ; conversely, with any binary tournament
T, we associate the sequence : - - I (T) of its labels, taken
in symmetric order.

3.3 Combinatorial Properties of Binary Tournaments
We let T, denote the set of tournament representa-

tions of all permutations o E S,, considered as elements
of [n]" (see Figure 11).

Correspondence Y." S, ~ T, being one-one implies
that I J n l = n!.

To express combinatorial properties of this corre-

/ ' \
13 5

/\ /\
22 35 17 ,53
\ /
4 8 97

Communications April 1980
of Volume 23
the ACM Number 4

Fig. 10. The Cartesian tree associated with the sequence
(22, 48, 13, 97, 35, 3, 17, 5, 53). The y part of this tree is given in
Figure 9.

spondence, we define the left branch LB (T) o f a labeled
b inary tree T as the sequence:

(1) LB (0) = A for the emp ty tree;
(2) LB (T) = v(T) .LB(I(T)) , where v(T) is the label

o f the root o f T ~ ~ and l (T) is the left subtree
o f T.

We define the right branch RB (T) in a symmetr ica l
manner , and we let B (T) = LB (T) O R B (T) denote
the branches of T.

PROPOSITION 3. Stirling numbers o f first kind count
the binary tournaments T E Tn o f size n having a left
branch ILB (T)I = k or a right branch IRB (T)[= k. The
left branch and right branch o f a random T ~ Tn has
length Hn = 1 + 1/2 + . . . + 1/n. Numbers &,k =

k - 1 2 s~-l, k-t count the binary tournaments T E Tn such that
IB (T)I = ILB (T)I + IRB (T)[- 1 -- k.

PROOF. Correspondence J - m a p s L R M I N (S) into
LB (T) and R L M I N (S) into RB (T) . T h e result thus
follows f rom Proposi t ions 1 and 2. 0

3.4 Cut t ing a C a r t e s i a n T r e e

Given the Car tes ian tree ~(P) represent ing a set
o f points P = {pl p~), we wish to cut it in two
parts c~(P<c) and ~(P>_c); here c E /R is given, P<c =
(t 7 E PIP = (x, y) , x < c) is the subset o f P whose x-
coordinate is < c and P>~ is the complemen t (see Figure
12).

The cut opera t ion is described by Algor i thm 1 below;
if T is a Car tes ian tree and c E / R a real number , the call
(L, R) ~ CUT(T , c) creates two Car tes ian trees L =
c¢(P<c) and R = c¢(p_>~), where P = ~ - I (T) is the p lane
set represented by T.

Fig. 11. The 6 = 3! Binary Tournaments Ta.

Algorithm 1 (Cut of a Cartesian Tree)

proe(L R) ~ CUT(CT, c)
Cartesian tree L, R, CT; real c; point p;
if CT = O then (L, R) ~-- (0, 0)

else p .-- v(CT);
if c < x(p) then (L, R) ..-- CUT(I(CT), c);

R ~-- (R ,p , r (T))
else (L, R) <--- CUT(r(CT), c);

L ,~-- (l(T),p, L)
fi

fi
fproc CUT.

In this algori thm, we introduce the da ta type point;
a point p is a pair (a, b) E /R 2 o f its x coordinate
x(p) = a and its y coordinate y(p) = b. The da ta type
C a r t e s i a n tree designates b inary trees labeled by points
so as to fo rm binary search trees on their x labels and
binary tournaments on t he i ry labels. I f CT is a Car tes ian
tree, v(CT) is the point labeling the root o f CT; the left
and fight subtrees o f C T are I(CT) and r (CT) . Car tes ian
trees are thus def ined by the rules:

(1) The emp ty tree O is a Car tes ian tree.
(2) I f /7 is a point, L and R are Car tes ian trees, then

(L, p, R) = CT is a Car tes ian tree such that v(CT)
= p, l (CT) = L and r(CT) = R provided that

(a) Vq E L:x(q) < x(p),
Vq E R:x(q) > x(p) (binary search tree in x);

(b) L ~ 0 ~ y(v(L)) > y(p),
R ~ 0 ~ y(v(R)) > y (p) (binary t ou rnamen t in
y).

The algor i thm C U T (C T , c) need only examine a
path, pa th(l , c), in CT fo rmed o f the points p E C T for
which a compar i son c ? x(p) is performed; in the resulting
trees L and R, the points thus examined are found to
fo rm RB (L) union LB (R). This s imple observat ion
leads to an analysis o f the n u m b e r o f compar i sons in the
C U T algor i thm and to the definit ion o f an interesting
combina tor ia l correspondence.

PROPOSITION 4. The average number o f comparisons
c ? x(p) in CUT(CT, c), where [CT[= (n - l) is 2Hn -
2; the probability that this number o f comparisons is exactly
k equals 1/n!.tn, k+2 = 2k/n!.sn-l,k. There is a one-one
mapping O: Tn ---, T~ between binary tournaments trans-
forming the path, path(l , n, T), f rom the root to the point
labeled n in T E T, into the branches B (O(T)) o f O(T)

T~: IPath(l , n, T)I -- IB (O(T))I.

233

/
Communications
of
the ACM

April 1980
Volume 23
Number 4

Fig. 12. The Cartesian Tree of Figure 8 Cut at c = 7.

PROOF. Let T E Tn be a binary tournament, with
T = ~-(o) where o = (o(1) o(n)) is the permutation
obtained by taking the labels of T in symmetric order.
Let i = o-~(n) be the index of the node labeled n in that
traversal. We also consider the Cartesian tree c~(p) as-
sociated with o by P = ((i, o(0)11 _< i _< n) as in Section
3.2. Note that ~(P) can be formed from T by adding, as
an x coordinate to every node in T, its index in symmetric
order. We proceed to form (L, R) <-- CUT(C~(P), 0.

The path path(l, n, T) is now in correspondence with
RB (L) union LB (R). Construct L ' and R ' by removing
(either from L or from R) the node whose label is
(i, n), remove the x part of all labels, and increase the y
labels by I. We are left with two binary tournaments
L ' and R', whose labels are all different, and labels
(L" U R') = {2, 3 n). The resulting binary tourna-
ment O(T) = (R', l, L ') E T, is indeed such that

I B (0(T)I = 1 + ILB (R')I + IRa (L')] = IRB (L)I
+ ILB (R)I = Ipath(l , n, T)I.

Note that the associated permutation 0(o) can be de-
scribed by the simple rule

0(o) = (o(i + 1) + 1, . . . , o(n) + 1, l,
tr(1) + 1, . . . , o(i -- l) + l)

where i = o-l(n) is the index of the largest element in o.
The analysis of Algorithm l is performed under the

hypothesis that the n! order equivalence classes of Carte-
sian trees (P t.J (i, +oo)), where IPI = n - 1 are equally
likely. The number of comparisons c ? x(p) is equal to
Ipath(1, n, T)I, where T is the order equivalence class of
(P t3 (c, +0o)), and the rest of the proposition follows
from bijection 0 and Proposition 3 (see Figure 13). [3

Algorithm 1 and the following algorithms are de-
scribed recursively; it is routine work for a trained com-
puter scientist to produce efficient nonrecursive versions
of these algorithms.

3.5 C o n c a t e n a t i o n o f Cartes ian T r e e s
The preceding section establishes that CUT(P, c) is

a one-one mapping between Cartesian trees P, value c,
and pairs (L, R) = CUT(P, c) of Cartesian trees such
that the x values of labels in L are <c, and they are >c
in R. Given such a pair (L, R), the converse of CUT is
the concatenation of Cartesian trees, described by
Algorithm 2.

234

Algorithm 2 (Concatenation of Cartesian trees L and R, such that
p E L, q E R ~ x(p) < x(q))

pro¢ CT ~ CONS(L, R)
Cartesian tree CT, L, R; comment Vp E L, q ~ R:x(p) < x(q);
if L = ~ then CT ~ R
elsif R = O then CT ~ L
elsif y(v(L)) < y(v(R)) then CT *-- (I(T), v(L), CONS(r(L), R))
elsify(v(L)) > y(v(R)) then CT *-- (CONS(L, I(R)), v(R), r(R))

fi
fproe CONS.

This algorithm is inverse to CUT in the sense that,
performing (L, R) ~ CUT(T~, c), T2 *-- CONS(L, R) is
equivalent to T2 ~ T1. Precisely, it merges the two
ordered sequences RB (L) and LB (L) into the ordered
sequence path(l, c, CT) where c = max(RB (L), LB (R)).
Although CUT(CT, c) and CONS(L, R) are mathemat-
ically inverse in this strong sense, the number of opera-
tions performed by both algorithms is not the same.

The reason is that the number C of comparisons
performed in merging two ordered sequences S =
(sl sp) with Si < Si+l for 1 _< i < p and R =
(rl rq) with rj < rj+l for 1 <_ j < q is not equal to
p + q = IRI + ISI, but rather to IRI + ISI - In(R, S)l
where H(R, S) = {r E RIr > sp} U {s E SI s > rq} is the
set of elements of R (and S) greater than all elements in
S (and R).

PROPOSITION 5. The average number of comparisons
C(L, R) of the type y(v(L)) ? y(v(R)) in Algorithm 2 is
equal to H,+I + nm+l -- 2, where n = ILl, m = IRI.

PROOF. Let H(L, R) represent the union of points in
RB (L) having a y coordinate greater than g together
with points in LB (R) greater than d; here g(resp, d) is
the point in LB (R) (resp. RB (R)) having the largest y
coordinate. I f y (d) < y(g), we have H(L, R) C_ LB (R),
else H(L, R) C_ RB (L). In both cases, C(L, R) =
IRB (L)I + ILB (R)I - I/~(L, R)I.

To find another expression of C(L, R), we remark
that, if d < g, then C(L, R) = [RB (L) I + I LB (CONS(d,
R))[- 1; reestablishing symmetry yields the formula
C(L, R) = I RB (CONS(L, g))l + [LB (CONS(d, R)) I -
2. The average value H,+~ + Hm+l -- 2 follows from the

Communications April 1980
of Volume 23
the ACM Number 4

Fig. 13. The steps of bijection T----> 0(T) in the proof of Proposition 4;
here path(l, n, T) = (1, 3, 7, 9) and B (O(T)) = (8, 2, 1, 4).

T =

Here, we limit ourselves to describing and analyzing
the insertion procedure INSERT(CT, p) which adds
point p to the Cartesian tree CT. If p has a y value
y(p) <y(v (CT)) less than that of the root of CT, INSERT
merely cuts CTat x(p) to yield (L, R) = CUT(CT, x(p));
the result S of insert is then S = (L, p, R). I fy (p) >
y(v(CT)), we search for the largest subtree Q of CT, with
root on path(l, x(p)), CT) for which y(p) < y(v(Q)), in
which case we insert p in Q as described in the previous
case.

<3 ,3 > < 8 , 2 >

J \ / \
<1,6 > <5 ,7> <7, .5> <9 ,4 >

\ /
- :2 ,8 > < 4 , 9 >

Algorithm 3 (Insertion o f p in the Cartesian tree CT)

proc S *--- INSERT(CT, p)
Cartesian tree S, CT, L, R; point p;
if CT = O then S *-- (0, p, 0)
elsify(p) <y(v(CT)) then (L, R) * -CUT(CT, x(p)); S ,-- (L,p , R)
elsif x(p) < x(v(CT)) then S , - (INSERT(I(CT),p) , v(CT), r(CT))
else S *-- (I(CT), v(CT), INSERT(r(CT), p))
fi

fproc INSERT.

CUT(C~(P), 4) = (L, R) with L = and R =

/ " ' \ / ' " \
<1 ,6> 4 ,9> < 5 , 7 > <8 ,2 >

\ / \
<8 ,8> < 7 , 5 > <9,4 >

t p =
4

/
7 \

9

R p =
2

/ \
8 3 / \

6 5

O(T) =

/ ' \
2 4

/ \ /
8 3 7

/ \ \
6 5 9

assumption that all (%m) resulting order equivalence
trees are equally likely, and we apply Proposition 3. U

The preceding analysis of the number of comparisons
C(L, R) in the algorithm CONS(L, R) illustrates an
interesting point: This quantity has been analyzed geo-
metrically, i.e., it has been shown to correspond to some
intrinsic (static) parameter, expressed in terms of L, R,
and CT = CONS(L, R). A more computational and
naive approach to the analysis of this parameter can
easily lead to quite complicated formulas, as well as yield
a weaker result. We make other uses of the method of
geometric analysis of algorithms throughout this paper.

4. Applications to Searching

4.1 Two-Dimensional Searching
Cartesian trees (Section 3.1) are a natural data struc-

ture for representing plane sets and performing various
kind of searches. Natural procedures for MERGE,
SEARCH, SEARCHRANGE, and EXTRACT can be
designed and geometrically analyzed.

23s

This algorithm involves Cy(CT, p) comparisons be-
tween y coordinates y(p) ? y(v(CT)) and Cx(CT, p)
comparisons between x coordinates, either of the type
x(p) ? x(v(CT)) or occurring in the call to CUT(CT,
x(p)). Comparisons Cy are equal to the depth o f p in the
result; using Proposition 4 and summing yields 2
(1 + 1/n) Hn - 4.

PROPOSITION 6. The average number of x comparisons
Cx in Algorithm 3 I N S E R T is 2Hn - 1, where n = ISI is
the size of the result. The probability that Cx = k is tn, k.

PROOF. The assumptions in this analysis are that S
is a random element of Tn and that p can be any of the
n element of S, with equal probability. Let Tp be the
subtree of root p in S. Our parameter Cx is equal to
Cx = Ipath(1, p, S) I + IRB(I(T,))I + ILB(r(T,))I (see
Figure 14).

In order to analyze this parameter, we generalize
bijection 0 of Proposition 4 and construct a bijection Op
which exchanges C~ with path(l, n, 0,(S)). Bijection 0 is
the special case p = 1.

The easiest way to describe bijection 09 is to consider
the permutation o, = J - I (S) constructed by visiting S

Fig. 14. An example of application of bijection 03.

S =

path(l, 3, S) = (1, 3)
LB (r(Ta)) = (7, 9)
RB (l(T3)) = (6, 8)

Cx(S, 3) = 6

p = 3, 03(S) =

z \ 3

path(l, 9, 03(S))
= (1 , 5 , 6 , 7 , 8 , 9)

Communications
of
the ACM

April 1980
Volume 23
Number 4

Fig. 15. Binary Search Tree and Binary Search Tree with Arrival Time Associated with S = (22, 48, 13, 97, 35, 3, 17, 5, 53).

BST (S) BSTWAT (S)

in symmetric order; in the example of Figure 3, os =
(6 8 3 9 7 1 5 2 4). Let os = (o(1), . . . , tr(n)) and define
o' = 6p(as) = (o'(l) o' (n)) by the rules:

(1) tr'(i) = o(0 i f fo(0 < p .
(2) a'(0 = o(/) - 1 iff o(t) > p.
(3) o'(l) = n iff o(0 = p.

We then define 0 , (S) = ~-(Op(os)) as the binary
tournament associated with o' = 0,(o~).

The binary tournament 0 , (S) has the same shape as
S, except for the subtree T, in which the two branches
RB(I(Tp)) and LB(r(Tp)) are mapped into path(root, n,
O,(Tp)).

s op IS)

8p

Tp

The elements for a precise justification of this state-
ment are given in the proof of Proposition 4.

Since parameter Sx has the same distribution as
path(l, n, Op(S)), the result follows from Proposi-
tion 3. [3

4.2 Binary Search Trees
Let S = (s1 sn) be an ordered sequence S E R ~.

With such a sequence can be associated the Cartesian
tree T(P) where P = {(si, i) 11 _< i _< n}, which we call
binary search tree with arrival time (BSTWAT) of S. The
x part of T(P) is the usual binary search tree associated
with S (see, for example, Knuth [13]); t h e y part o f T (P)
specifies the rank of each element in sequence S (see
Figure 15).

Traditional algorithms SEARCH, INSERT, and EX-
TRACT are described and analyzed by Knuth [13]; a

236

complete geometrical treatment of these analyses is pro-
vided by Fran~on [9]. In this paper, we limit ourselves to
presenting an algorithm for M E R G I N G two binary
search trees, which is apparently original.

The algorithm for merging the two binary search
trees G and D considers the label x = v(D) at the root of
D; using CUT, it produces (L, R) = CUT(G, x) and
proceeds recursively to merge L with I(D), then R with
r(D). A precise description of M E R G E is given in Al-
gorithm 4.

Algorithm 4 (An algorithm for merging the two binary search trees G
and D, producing the binary search tree S for result)

proe S ~-- MERGE(G, D)
binary search tree S, G, D, L, R;
i fD = Othen S ~ G

else (L, R) ~ CUT(G, v(D));
S ~ (MERGE(L, I(D)), v(O), MERGE(R, r(D)))

fi
fprae MERGE.

In this algorithm, comparisons occur during the call
to CUT(G, v(D)).

PROPOSITION 7. I f G and D are independent random
binary search trees o f respective sizes n and m, the num-
ber o f comparisons in M E R G E (G , D) is equal to
2(n + m + 1)Hn+m - 2(n + 1)Hn - 2(m + 1)Hm.

PROOF. To carry out the analysis, we consider two
BSWATs, G' and D', having the same x part as G and
D, respectively. T h e y labels in D' are {1, 2 m} and
those in G' are {m + 1 m + n}. We can look at
M E R G E as a succession of insertions (Algorithm 3) of
the elements pl, . . . , p,~ of D', in order of increasing x-
value into G~ = Go G" = G~_, + pi

During the insertion of the ith element, we only need
to count the number of comparisons X~ of pi with
elements located below in the resulting tree G'. By
Proposition 6, we know that path(l, pi, G~) + Si =
path(I, n, G[), which combined with Proposition 4 yields
X i = 2 n n + i - 2 t l .

The result follows by summing, and by use of the
i d e n t i t y ~,,l<_i<_k Hi = (k + 1)nk -- k. [3

This MERGE(G, D) procedure reduces to the clas-
sical INSERT (Knuth [13]) at the leaves in the case
I G I = 1; in the case I D I = 1, we obtain the procedure of
insertion at the root discovered by Stephenson [15]. When
G and D are roughly of equal size, say G = O(n) and

Communications April 1980
of Volume 23
the ACM Number 4

Fig. 16. The Sequence S = (22, 48, 13, 97, 35, 3, 17, 5, 53) and Its Position Tournament Representation ~(S).

D = O(n), then Proposi t ion 7 shows that M E R G E is
pe r fo rmed in average linear time O(n). Note that this
program, unlike the other ones presented in this paper ,
requires the use of a stack in its nonrecursive description.

5. A p p l i c a t i o n s to L i n e a r L i s t s

A data structure for represent ing linear lists allows
one to manipu la te sequences (or words) (S1 Sn)

/R*, where the primit ive opera t ions al lowed are

(1) S E A R C H , I N S E R T , or D E L E T E the kth e lement
of a list;

(2) C O N C A T E N A T E two lists or C U T a list in kth
position.

We propose here to use a data structure derived f rom
Cartesian trees, al lowing very s imple a lgori thms for each
of these primit ives to have an average execut ion t ime o f
O(log n), where n is the size o f the lists manipula ted .

To represent the list S = (Sl s~), we use the
position tournament ~ (S) defined by the rules:

(1) ~ (A) = ~5.
(2) I f s i = mina<j<n{sy} , then ~(S l s~) =

((S a , . . . , , ' - 1)) " . . . , S n))

In other words, ~ (S) is i somorphic to the b inary
tou rnamen t 3 - (S) of S (see Section 3.2), except that each
labe lp i in ~ (S) is fo rmed by the pa i rp i = (xi, ri), where
x~ is the value of the ith e lement o f S and ri - 1 is the
size of the left subtree l(Ti) of root pi in ~ (S) .

I f p = (x, r) is a label in # (S) , we call r ank(p) = r
the size of its left subtree increased by l (see Figure
16).

Searching for the kth e lement in such a structure is
i somorphic to searching a b inary search tree: First con-
sider the rank r o f the root; if r > k, we search the kth
e lement of the left subtree; i f r = k, the root is the answer;
i f r < k, we search the (k - r)th e lement o f the right
subtree (see Algor i thm 5).

237

Algorithm 5 (Searching for the kth element of position tree P)

proc X <-- SEARCH(P, K)
real X; position tournament P; integer K;
comment 1 _< K _ < Iel;
if K = rank(v(P)) then X <-- x(v(P))
elsif K < rank(v(P)) then X ,,-- SEARCH(I(P), K)
else X <-- SEARCH(r(P), K - rank(v(P)))
fi

fproc SEARCH.

Analysis o f this a lgor i thm is a s t ra ightforward con-
sequence o f the previous results.

PROPOSITION 8. The number C o f comparisons in
executing Algorithm 5, X <-- S E A R C H (P , K) where
IPI = n is a s f o l l o w s :

(0 i l k = 1, then average(C) = Hn and prob(C = k) =
1/n!. sn, k;

(ii) i f X is the largest x value in P, then average(C) =
2Hn - 1 and prob(C = k) = 1/n!.t~,k = 2k/n! •
Sn-- l ,k--1;

(ii 0 the average value o f C in searching f o r all values
l < _ k < _ n i s 2 (l + 1 / n) H n - 3.

PROOF. Condi t ions (i) and (ii) are mere rephrasing
o f Proposi t ions 3 and 4. Note that the analysis can be
refined in case (ii): the n u m b e r of compar i sons for which
K < rank(v(P)) , i.e., the n u m b e r i o f executions o f
instruction X ~ S E A R C H (r (P) , K - rank(v(P)) has

k s (i) ~-1, k-1 for distribution.
T o compute the average value o f C in case (iii), we

note that it is equivalent to search P for each o f its x
values; by Proposi t ion 4, searching for the j t h value
involves 2Hi - 1 compar i sons on the average, thus the
result (1/n)~l<_j<_n (2Hi - 1). [3

Algor i thms for cutt ing a posit ion tou rnamen t P in
posit ion K, with 0 _< K _< [P I, and the inverse opera t ion
of concatenat ion, are s t ra ightforward adapta t ions (ho-
m o m o r p h i s m s to be precise) o f C U T and C O N S Algo-
r i thms 1 and 2. Figure 17 illustrates these a lgori thms on
an example.

Similarly, insertion in a posit ion tou rnamen t is a
direct adapta t ion of Algor i thm 3, the analysis o f Propo-
sition 6 remaining valid.

Algor i thm 6 gives a comple te descript ion o f
(X, Q) ~ E X T R A C T (P , K) which extracts the kth
e lement X(1 _< k _ [PD o f posit ion tou rnamen t P and
yields the posit ion tou rnamen t Q for result.

Communications April 1980
of Volume 23
the ACM Number 4

Fig. 17. Operations CUT and CONS on Position Tournaments.

22 48 13 97 [.35 3 17 .5 55

I

I
L R

P ~ CONS(L, R)

(L, R) ~ CUT(P, 5)

Algorithm 6 (Extraction of the kth element of position tournament P)

proe (X, Q) ~-- EXTRACT(P, K)
real X; position tournament P, Q, S; integer K;
comment 1 _< K_< [p[;
if K = rank(v(e)) then X ,-- x(v(P)); Q ~-- CONS(I(P), r(P))
elsif K < rank(v(P)) then (X, S) ~-- EXTRACT(I(P), K);

Q ,-- (S, (x(v(P)), rank(v(P)) - 1), r(P))
elsif K > rank(v(P)) then (X, S) ~-- EXTRACT(r(P), K - rank(v(P)));

Q ~-- (l(P), v(P), S)
fi

fproc EXTRACT.

This algorithm performs two types of comparisons:
Rank comparisons K ? rank(v(P)) are analyzed in Prop-
osition 8; as for x comparisons that take place during
recursive calls to CONS(/(P), r(P)), an analysis by Fran-
ton et al. [10] shows that the average value of this
parameter is 1 - (2Hn/n) + 1/n, where n = Iel.

6. Other Applications and Conclusions

Other interesting algorithms use binary tournaments
as their underlying combinatorial structure. The most
widely used is the sorting algorithm Quicksort of Hoare
[12], which has been completely analyzed by Sedgewick
[14]. The key to Quicksort is a partitioning algorithm,
whose successive applications implicitly constructs a bi-
nary search tree; the combinatorial tools shown in this
paper can be readily applied to confirm the analysis of
Sedgewick [14].

Another application has been discovered by Fran~on
et al. [10] who propose to represent priority queues (see
Knuth [13] for a definition) by binary toumaments. The
key to their result is a data structure, the pagoda, which
is an upside-down representation of binary tournaments;
the discovery of pagodas arises from a careful inspection
of the CONS Algorithm 2, showing that a bottom-up
merging of the sorted sequences RB(L) and LB(R) is

7,38

more efficient than the straightforward top-down method
of this paper.

To conclude, we note that a careful use of the same
combinatorial structure, namely, binary tournaments,
leads to a wide variety of algorithms and data structures,
for sorting (quicksort), representing linear lists (position
tournaments), and priority queues (pagodas). These al-
gorithms have a definite practical significance, since each
of them provides the fastest average time solution known
to its specific problem.

Our contention here is that a close examination of
the underlying combinatorial structure (in our case per-
mutations) brings up interesting new algorithms and data
structures; it also brings a surprising amount of unity to
a field which we think badly needs it. One worthwhile
goal in that respect would be to apply the same kind of
work to another family of algorithms, including digital
search tree, h-code, and radix sorting (as described and
analyzed by Knuth [13]) and to bring to light the under-
lying combinatorial structure common to so many of
these algorithms. Despite the enormous number of inter-
esting solutions known for solving basic data manipula-
tion problems, we believe that most of these solutions
ultimately rest on a relatively small number of different
combinatorial structures. A progress in our understand-
ing of these questions should drastically affect the
way in which we discover and explain the fundamental
algorithms, as catalogued by Knuth [13] and Aho et al.
[1].

7. Bibliographical Note

An account of methods in combinatorial geometry is
given by Foata and Schutzenberger [7], which has had
great influence on the present work.

The classical results of Section 2 of this paper can be
found, for example, in Comtet [3]. Construction of the

Communications April 1980
of Volume 23
the ACM Number 4

binary tournament (Section 3) associated with a permu-
tation is used by Foata and Schutzenberger [7] and Foata
and Strehl [8]. Various algorithmic uses of the construct
can also be found in Burge [4] and Viennot [16].

Binary search trees are discussed in particular by
Knuth [13] and Fran~on [9].

The analysis of position tournament algorithms is
implicit in Fran~on et al. [10], where application to
priority queues is discussed. Balanced tree representa-
tions of linear lists are described by Aho et al. [1], Guibas
et al. [11], and Brown and Tarjan [2],

Finally, a much more comprehensive treatment of
combinatorial methods in algorithm design and analysis
is attempted by Flajolet et al. [5].

Acknowledgments. The results presented here are as-
pects of more general joint research with P. Flajolet, J.
Fran~on, and G. Viennot. The main ideas presented in
this paper all evolved from this joint work.

Received 4/79; revised 9/79; accepted 12/79

R e f e r e n c e s
1. Aho, A.V., Hopcroft, J., and Ullman, J.D. The Design and
Analysis o f Computer Algorithms. Addison-Wesley, Reading, Mass.,
1974.
2. Brown, M.R., and Tarjan, R.E. A representation for linear lists
with movable f'mgers. In Proc. 10th Ann. A C M Symp. Theory of
Comptg., 1978, pp. 19-29.

3. Comtet, L. Advanced Combinatorics. D. Reided Pub. Co., Boston,
Mass., 1974.
4. Burge, W.H. An analysis of a tree sorting method and some
properties o f a set of trees. In Proc. 1st U S A - J a p a n Comptr . Conf.,
1972, pp. 372-378.
5. Flajolet, P., F ranfon , J., Viennot, G., and Vuillemin, J.
Algori thmique et combinatoire des arbres et permutat ions. To appear
(1981).
6. Flajolet, P., Frangon, J., and Vuillemin, J. Sequence o f operat ion
analysis for dynamic data structures. 3". Algorithms. To appear (1980).
7. Foata, D., and Schutzenberger, M.P. Theorie g~omCtrique des
polynCmes Euleriens. Lecture Notes in Mathematics, No. 138,
Springer-Verlag, Berlin, 1970.
8. Foata, D., and Strehl, V. Rearrangements of the symmetr ic group
and enumerat ive properties of the tangent and secant numbers . Math.
Zamet. 137 (1974), 256-264.
9. Frangan, J. Arbres binaires de recherche, propriCtCs
combinatoires et applications. RA I R O In f ormatique Thdorique 10
(1976), 35-50.
10. Fran~on, J., Viennot, G., and VuiUemin, J. Descript ion et analyse
d 'une reprCsentation pefformante des files de prioritC. Rep. 12, Lab.
d ' Informatique, Orsay, France; also in Proc. 19th Ann. A C M Syrup.
on Foundat ions of Comptr . Sci., 1978, pp. 1-7.
11. Guibas , L., Creight, E.M.M., Plass, M.F., and Roberts , J.R. A
new representation for linear lists. In Proc. 9th Ann. A C M Syrup.
Theory of Comptg. , 1977, pp. 49-60.
12. Hoare, C.A.R. Quicksort. Comptr. J. 5, 1 (1962), 10--15.
13. Knuth , D.E. The Art o f Computer Programming, Vol. 3: Sorting
and Searching. Addison-Wesley, Reading, Mass., 1973.
14. Sedgewick, R. Quicksort. Rep. STAN-CS-75-492, Dept. Comptr .
Sci., Stanford Univ., Stanford, Calif,, May 1975.
15. Stephenson, C.J. A method for constructing binary search trees
by making insertions at the root. Rep. RC 6298, IBM T h o m a s J.
Watson Res. Ctr., York town Heights, N.Y., 1976.
16. Viennot, G. Quelques algori thmes de permutat ions. AstCrique
38-39, Societ6 MathCmatique de France, 1976, pp. 275-293.

P r o f e s s i o n a l Act iv i t i e s
C a l e n d a r o f E v e n t s
ACM's calendar policy is to list open computer
science meetings that are held on a not-for-profit
Basis, Not included in the calendar are educational
seminars, institutes, and courses. Submittals should
be substantiated with name of the sponsoring orga-
nization, fee schedule, and chairman's name and full
address.
One telephone number contact for those interested
in attending a meeting will be given when a number
is specified for this purpose.
All requests for ACM sponsorship or cooperation
should be addressed to Chairman, Conferences and
Symposia Committee, Seymour J. Wolfson, 643
MacKenzie Hall, Wayne State University, Detroit,
MI 48202, with a copy to Louis Flora, Conference
Coordinator, ACM Headquarters, 1133 Avenue of
the Americas, New York,NY 10036; 212 265-6300.
For European events, a copy of the request should
also be sent to the European Representative. Tech-
nical Meeting Request Forms for this purpose can
be obtained from ACM Headquarters or from the
European Regional Representative. Lead time
should include 2 months (3 months if for Europe)
for processing of the request, plus the necessary
months (minimum 3) for any publicity to appear in
Communications.
• This symbol indicates that the Conferences and
Symposia Committee has given its approval for
ACM sponsorship or cooperation.
In this issue the calendar is given to November 1981.
New Listings are shown first," they will appear next
month as Prevtous Listings.

NEW LISTINGS
15-17 April 1980

• Annual Conference on Computer Graphics, De-
troit, Mich. Sponsor: Engineering Society of Detroit
in cooperation with ACM. Conf. chin: Fred Lan-
ghorst, Transportation Systems Center, General Mo-
tors Technical Center, Warren, MI 48090; 313 575-
8311.

29-30 April 1980
Sixth Illinois Conference on Medical Informa-

tion Systems, Champaign, Ill. Sponsors: University
of Illinois, Regional Health Resource Center, Society
for Advanced Medical Systems, Society for Com-
puter Medicine, University of Missouri Health Care

239

Technology Center. Contact: Saundra Wheeler, 1408
W. University, Urbana, IL 61801.

30 April 1980
Capacity Planning and Shop Floor Control, Syr-

acuse, N.Y. Sponsors: ACM Syracuse Chapter,
American Production and Inventory Control Society
Syracuse Chapter. Contact: Michael Busse, Anaren
Microwave Inc., 185 Ainsley Dr., Syracuse, NY
13205 or Hamilton Armstrong, Carrier Corp., Box
4895, Syracuse, NY 13221.

6-10 May 1980
Canadian Association for Information Science

Annual Conference, Toronto, Ont., Canada. Sponsor:
CAIS. Contact: Ilse Cockburn, 36 Brookdale Ave.,
Toronto, Ontario, Canada M5M IP3.

15-16 May 1980
NYU Symposium on Distributed Processing

Practice, New York City. Sponsor: Graduate School
of Business Administration of New York University.
Contact: CA1S Dept., 700 Merrill Hall, 90 Trinity
Place, New York, NY 10006; 212 285-6120.

3-6 June 1980
International Conference on Boundary and In-

terior Layers--Computational and Asymptotic
Methods (BAIL I), Dublin, Ireland. Sponsor: Nu-
merical Analysis Group. Contact: BAIL I Confer-
ence, 39 Trinity College, Dublin 2, Ireland.

16-19 June 1980
Thirteenth Annual Conference of Association of

Small Computer Users in Education, University of
Tennessee, Martin. Sponsor: ASCUE. Contact:
James Westmoreland, Computer Center, University
of Tennessee, Martin, TN 38238; 901 587-7891.

26-27 June 1980
• ACM SIGPCR Seventeenth Annual Computer
Personnel Research Conference, Boca Raton, Fla.

OnSor: ACM SIGPCR. Conf. chm: Elias M. Awad,
liege of Business and Organizational Sciences,

Florida International University, Miami, FL 33199;
305 552-2791.

30 June 1980
Panel on Software Metrics, Washington, D.C.

Sponsors: Yale University and Office of Naval Re-
search. Contact: ONR Software Metrics Panel, Attn.
Alan J. Perlis, Computer Science Dept., Yale Uni-
versity, 2158 Yale Station, New Haven, CT 06520.

19-21 August 1980
• National Artificial Intelligence Conference, Palo
Alto, Calif. Sponsor: American Association for Ar-
tificial Intelligence in cooperation with ACM SI-
GART. Conf. chm: J. Marty Tenenbaum, SRI In-

Communica t ions
o f
the A C M

ternational, 333 Ravenswood Ave., Menlo Park, CA
94025; 415 326-6200 x4167.

3-5 September 1980
19th Annual Lake Arrowhead Workshop on

Office Information Systems, near Los Angeles, Calif.
Sponsor: IEEE-CS. Workshop co-chm: Clarence A.
Ellis and Gary J. Nutt, Xerox PARC, 3333 Coyote
Hill Road, Palo Alto, CA 94304.

15-17 October 1980
V ICCRE, Fifth International Conference on

Computers in Chemical Research and Education,
Toyohashi, Japan (a post congress symposium of
Seventh International CODATA Conference,
Kyoto, Oct. 8-11). Contact: S. Sasaki, School of
Materials Science, Toyohashi University of Tech-
nology, Tempaku, Toyohashi, Japan 440.

2-5 November 1980
Fourth Annual Symposium on Computer Appli-

cations in Medical Care, Washington, D.C. Sponsor:
The George Washington University Medical Center.
Prog. chm: Joseph T. O'Neill, National Center for
Health Services Research, Center Building, Room 8-
30 #1, 3700 East-West Highway, Hyattsville, MD
20782; 301 436-8946.

30 November-2 December 1980
• Micro 13--13th Annual Workshop on Micropro-
grannning, Colorado Springs, Colo. Sponsors: ACM
SIGMICRO, IEEE-CS. Conf. chin: G.R. Johnson,
Dept. of Engineering Science, Colorado State Uni-
versity, Fort Collins, CO 80523; 303 491-7585.

3-8 December 1980
• 1980 Winter Simulation Conference, Orlando,
Fla. Sponsors: ACM SIGSIM, ORSA, TIMS, AIEE,
SCS, U.S. Dept. of Energy. Conf. chm: Paul F. Roth,
U.S. Dept. of Energy, Mail Stop 4530, 12th and
Penn, Washington, DC 20461; 202633-9629.

3-5 February 1981
• Fifth Berkeley Workshop on Distributed Data
Management and Computer Networks, Emeryville,
Calif. Sponsor: Lawrence Berkeley Laboratory in
cooperation with ACM. Conf. chm: Rowland R.
Johnson, Lawrence Berkeley Laboratory, University
of California, Berkeley, CA 94720; 415 486-6321.

19-22 April 1981
• Computing for Development, Bangkok, Thai-
land. Sponsors: Carl Duisberg Gesellschaft, Asian
Institute of Technology in cooperation with ACM
SIGBDP, SIGCAS, SIGMOD, SIGSIM. Conf. chm:
M. Nawaz Sharif, Div. of Computer Applications,
Asian Institute of Technology, P.O. Box 2754, Bang-
kok, Thailand.

(Calendar continued on p. 242)

April 1980
Volume 23
N u m b e r 4

