NH
S Information
Processing

- Letters

ELSEVIER Information Processing Letters 74 (2000) 107-114

www.elsevier.com/locate/ipl

Path-based depth-first search for strong and
biconnected components

Harold N. Gabow

Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA

Received 19 October 1999; received in revised form 1 March 2000
Communicated by S.E. Hambrusch

Keywords:Graph; Depth-first search; Strongly connected component; Biconnected component; Stack; Algorithms

1. Introduction ally simpler but it requires two passes over the graph.
It is presented in texts [2,4,6,25]. Tarjan's LOW-
Depth-first search, as developed by Tarjan and co- POINT biconnected componentalgorithm is presented
authors, is a fundamental technique of efficient al- in texts [1,2,4,5,7,13,14,16,17,21,25]. A two-pass bi-
gorithm design for graphs [23]. This note presents connected component algorithm of Micali that avoids
depth-first search algorithms for two basic problems, LOWPOINT values is sketched in [7, pp. 67-68].
strong and biconnected components. Previous algo- This paper presents strong and biconnected compo-
rithms either compute auxiliary quantities based on the nent algorithms that are based on the depth-first search
depth-first search tree (e.g., LOWPOINT values) or re- path. This natural approach appears to have first been
quire two passes. We present one-pass algorithms thajproposed by Purdom [19] and Munro [18] for strong
only maintain a representation of the depth-first search components. It is regarded as requiring an extra data
path. This gives a simplified view of depth-first search structure for set merging in order to be asymptotically
without sacrificing efficiency. efficient, and hence unlikely to be efficient in prac-
In greater detail, most depth-first search algorithms tice [23]. We present linear-time implementations of
(e.g., [23,10,11]) compute so-called LOWPOINT val- this approach for both strong and biconnected compo-
ues that are defined in terms of the depth-first search nents. Our implementations use only stacks and arrays
tree. Because of the success of this method LOW- as data structures. A line-by-line pseudocode compar-
POINT values have become almost synonymous with ison of our algorithms with the tree-based algorithms
depth-first search. LOWPOINT values are regarded as of [23] shows the two approaches are similar in terms
crucial in the strong and biconnected component algo- of lower level resource usage; performance differences
rithms, e.g., [14, pp. 94, 514]. Tarjan’s LOWPOINT gre |ikely to be small or platform-dependent. Our algo-
method for strong components is presented in texts [1, rithms show that the simpler path-based view of depth-
7,14,16,17,21]. The strong component algorithm of frst search suffices for these properties.
Kosaraju and Sharir [22] is often viewed as conceptu- ope can design other path-based depth-first search
algorithms for properties such as ear decomposi-
1 Email: hal@cs.colorado.edu. tion [15], st-numbering [7], topological numbering,

0020-0190/00/$ — see front mattér 2000 Published by Elsevier Science B.V. All rights reserved.
PIl: S0020-0190(00)00051-X

108 H.N. Gabow / Information Processing Letters 74 (2000) 107-114

2 3
2 {2,4,5} {2,4,5} {2,4,5}
: 4 \
5 5 \ 6 6
‘@5 3

(a) (b) (c) (d) (e)

Fig. 1. (a) DigraphG. (b)—(e) PathP (solid edges) in the first several steps of the algorithm. Strong compéBjeistoutput in (d).

etc. The complete version of this paper [8] includes an is formed by contracting the vertices of each strong
algorithm to find the bridges of an undirected graph, component. Equivalently the strong component graph
leading to an immediate proof of Robbins’ Theo- is the acyclic digraph, formed by contracting vertices
rem [20]. It also includes a simple articulation points of G, that has as many vertices as possible. In short we
algorithm, and a previously unpublished strong com- say the strong component graph is the finest acyclic
ponent algorithm of Tarjan that can be interpreted as contraction ofG.
path-based. This characterization suggests the following high-
Section 2 presents our strong component algorithm level algorithm to find the strong component graph of
and Section 3 presents the biconnected componentG = (V, E). See Fig. 1. The algorithm maintains a
algorithm. Appendix A proves a simple property of graphH that is a contraction of; with some vertices
biconnected components. We conclude this section deleted. It also maintains a pakhin H. Initially H is
with some terminology. the given graplt.
Singleton sets are usually denoted by omitting set If H has no vertices stop. Otherwise start a new
braces, e.g., for a sétand element, S — x denotes path P by choosing a vertex and settingP = (v).
S —{x}. We assume all input graphs contaimertices Continue by growingP as follows.

andm edges. To grow the pathP = (v1, ..., vx) choose an edge
We use the following operations to manipulate a (v, w) directed from the last vertex @ and do the
stackS: PUSHx, S) addsx to S at the (new) top of. following:

PORS) removes the value at the top of the stack and
returns that valueTOR'S) is the index of the value at
the top of the stack. Henc TORS)] is the value at
the top of the stack.

e If w¢ P, addw to P, making it the new last vertex
of P. Continue growingP.

e If we P, sayw = v;, contract the cycley;, v;y1,
..., v, bothinH and in P. P is now a path in the
new graphH . Continue growingP.

e If no edge leavesy, outputy, as a vertex of the

2. Strong components strong component graph. Deletg from both H
. . _ andP. If P is now nonempty continue growing.
Consider a digrapl = (V, E). Two vertices are Otherwise try to start a new pafh

in the samestrong componenof G if and only if
they are mutually reachable, i.e., there is a path from It is easy to see that this algorithm forms the finest

each vertex to the other. Tlstrong component graph acyclic contraction ofG. (For instance if no edge

H.N. Gabow / Information Processing Letters 74 (2000) 107-114 109

B S |
—[1] —[1]
{2 | 2|
W e
5 5
{6 | {6 |
=3 o
(a) (b) (c) (d)

Fig. 2. (a)—(d) show the data structure for Fig. 1(b)—(e), respectively. Stackhown. Arrows to the left of represent stack. Arrows to the
right of S represent the entries @fthat are used in contract steps. For example, in (a) the algorithm r¢2ds 2 and then contracts cycle
2,4,5 to get (b). In (c)/[3] changes from 6 to 7, the latter being the strong component number of vertex 3.

leavesv; then v, is a vertex of the finest acyclic vertices. More specificall§ andB correspond ta® =
contraction.) Thus the algorithm correctly computes (vy, ..., vx) wherek = TORB) and fori =1, ...k,
the strong components. o . rs . .

This high-level algorithm was originally proposed vi = {8l BlI< j < Bli +11}. @
by Purdom [19] and Munro [18]. The time for an ef- Whenk > 0 we haveB[1] = 1. Also when =k in (1)
ficient implementation is dominated by the time to We interpretB[k + 1] to beTORS) + 1.
keep track of the new vertices formed by contraction ~An array /[1..n] is used to store stack indices. It
operations. Any data structure for disjoint set merg- @lSO stores the strong component number of a vertex
ing [6] can be used for this purpose. Purdom [19] and When that number is known. More precisely for a
Munro [18] use simple set-merging data structures, 9'V€N vertexv atany pointintime,
achieving total time ©@:%) and Qi +n logn), respec- 0 if v has never been iR;
tively. Tarjan has shown set merging can be more ef- | j ifviscurrently inP andS[j] = v;
ficiently, giving total time Qma(m, n) + n) [24]. In Iv]= - ifthe strond component containi
fact the incremental tree set merging algorithm of [9] has been dgeletedpand numberedngs
can be used. This reduces the time t@nG+ n), giv-)
ing a linear-time algorithm to find strong components. _

However the overhead of using incremental tree set SiNce there are only: vertices, there can be no
merging may be significant in practice. Also the incre- confusion between an index and a component
mental tree algorithm requires a RAM machine and numberc in (2). A variablec is used to keep track
does not apply to a pointer machine. Now we give a of the compqnentnum_bers.) _

simple list-based implementation that achieves linear The algorlf[hm consists of a main routiSTRONG

time. The data structure is illustrated in Fig. 2. and a recursive procedubd-S

Assume the vertices of the given gragh are
numbered by consecutive integers from 1ntoThe
algorithm_ nu_mbers the st_rong components®fby 2. for veV do I[v] = O:
consecutive integers starting at+ 1. It records the Ce=n:

Ztr;)ng) component number for each vertex (see (2) 4 for y ¢ V do if I[v] = Othen DFS(v):
elow).

Two stacks are used to represent the pRilStack procedure DFS(v)

S contains the sequence of (original) vertice®imand 1. PUSHv, S); I[v] = TORS); PUSHI[v], B);
stack B contains the boundaries between contracted /* add v to the end ofP */

procedure STRONGS)
1. empty stacks andB;

110

2. for edgeqv, w) € E do
3. if Iflw] =0then DFSw)
4. elsel* contract if necessary */
while I[w] < B[TORB)] do PORB);

5. if I[v] = B[TORB)] then
{I* number vertices of the next

strong component */
PORB); increase: by 1;
while I[v] < TORS) do I[PORS)] =c};

6.
7.

Theorem 2.1. WhenSTRONGG) halts each vertex
v € V belongs to the strong component numbered
I[v]. The time and space are bo®(m + n).

Proof. We will prove the first assertion of the theorem
by showing thatSTRONG s a valid implementation
of the high-level algorithm. We begin by specifying
how the high-level algorithm will choose the edge
(vk, w) to grow P. Say that a vertex € V becomes
active(alternativelygets activatepiwhen it gets added
to P as the new last vertex. Thmost activevertex

H.N. Gabow / Information Processing Letters 74 (2000) 107-114

In D3 if 0 < I[w] < n thenD4 contracts a cycle or
does nothing iflv, w) has already been contracted. If
I[w] > n then the component containing has been
deleted and4 does nothing.

We turn to showing that the time and space are
O@m + n). We assume the given grapgh is stored
as a collection of adjacency lists. Observe that every
vertex is pushed onto and popped from each ssadk
exactly once. Hence it is easy to see that the algorithm
spends @1) time on each vertex or edgen

Comparing our code to the algorithm of [23], both
methods use stack; our sizen array ! corresponds
to a similar array that holds depth-first discovery
numbers; our staclB corresponds to a size array
that holds LOWLINK values. Botl§ and B contain at
mostn entries at any time.

An algorithm almost identical tSTRONGinds
the bridges of an undirected graph. The high-level
algorithm is based on the fact that contracting the
vertices of a cycle does not change the bridges of a

is the currently active vertex that was activated most graph. The details are given in [8].

recently. To choose the next edge;, w) let v be

the most active vertex. Choose a previously unchosen

edge directed fromwv, and use the corresponding
edge of H as (v, w). If all edges directed fromy
have been chosen then deactivatéf this makes all
vertices ofvy inactive then outputy as the next strong
component.

We must verify that this strategy correctly imple-
ments the high-level algorithm. This is easily done by
verifying thatv is a vertex ofu, i.e., the most active
vertex always belongs to the last vertexrof

Now we prove thaSTRONGmplements this ver-
sion of the high-level algorithm. We assume tiégt P

and the deleted strong components are as specified b

(1)-(2). The argument is by induction on the number
of statements executed BITRONGWe will mention

some points about the various statements and leave the

remaining straightforward details of the induction to

the reader. We refer to lines of pseudocode by the ini-

tial of the procedure name followed by the line number
e.g.,D7 is the last line oDFS
When S4 is being executedpP is empty. (By

convention the execution of a line or a statement

excludes the execution of any recursive call.) During
the execution of the loop d2, v is the most active
vertex.

3. Biconnected components

We present our algorithm for biconnected compo-
nents in the language of hypergraphs. This is not log-
ically necessary but it brings out the similarity to the
strong components algorithm.

We start by reviewing basic definitions about hy-
pergraphs [3,15]. AwypergraphH = (V, E) consists
of a finite setV of verticesand a finite sett of
edgeseach edge a subset &f A pathis a sequence
(v1, e1, ..., v, er) of distinct verticesy; and distinct

yedgeSei, 1<i <k,withvy € e1 andv; €ce;_1Ne; for
every 1< i < k. The set of all vertices in edges &f
is denoted

k
e
i=1

A cycleis a path with the additional properties that
1 andv; € ex. A hypergraph iscyclicif it contains no
cycle.

Notice that in a pathP each vertew; 1, 1 <i <k
belongsta; —v;. For this reason the sets— v; figure
prominently in our algorithm (e.g., see (4) below).
The algorithm also uses this operation on hypergraphs:

V(P)=

H.N. Gabow / Information Processing Letters 74 (2000) 107-114 111

1 1

(a) (b) (c) (d) (e)

Fig. 3. (a) Undirected grap@. (b)—(e) PathP (solid edges) in the first several steps of the algorithm. Biconnected comp&nént} is output
in (e).

To mergea collection of edges;, i =1,...,k, add (v, {v, w}) (choose the end arbitrarily). Continue by
a new edgeUleei and delete every edge aof growing P as follows.

contained in it (e.g.¢;). A mergingof hypergraphi To grow the pathP = (v, e1, ..., vk, ex) choose
is a hypergraph formed by doing zero or more merges an edge{v, w} # ex with v € ¢ — v and do the
onH. following:

Now consider an undirected graph = (V, E).
Two distinct edges are in the sarbieonnected com-
ponentof G if and only if some simple cycle con-
tains both of them. This relation is easily seen to
be an equivalence relation over the edges, so the bi-
connected components are well-defined. The “block-
cutpoint tree” of a graph represents the biconnected
components and cutpoints [12]. We will use a hyper-
graph variant of this notion: Thiglock hypergraphH#
of G is the hypergraph formed by merging the edges of
each biconnected component®f H is an acyclic hy-
pergraph. In factH can be characterized as the finest
acyclic merging ofG, i.e., itis the acyclic hypergraph Correctness of this algorithm is based on two
formed by merging edges @ that has as many hy- simple observations: When, {v, w} is added toP
peredges as possible. For completeness this characterthe result is a valid path, by the conditianc ¢, —

o If w ¢ V(P), add v, {v,w} to the end of P.
Continue growingP.

o If we V(P), sayw € ¢; — v;+1, merge the edges of
the cyclew, ¢;, vi+1, €41, ..., Vk, ex, v, {v, w} to a
new edgee = Ji_; e;, both in H and in P. P is
now a path ending witla (i.e., (v;, ¢) has replaced
(vi,ei, ..., vk, er)). Continue growingpP.

o If no edge leaveg; — vi, outpute, as an edge of
the block hypergraph. Deletg from H and delete
(vk, ex) from P. If P is now nonempty continue
growing P. Otherwise try to start a new pafh

ization is proved in Appendix A. vr. When edges are merged they form a valid cycle,
The characterization suggests the following high- by the condition{v, w} # e;. Now a straightforward
level algorithm to find the block hypergraph 6f = inductive argument proves the algorithm correctly

(V,E). See Fig. 3. The algorithm maintains a hy- forms the finest acyclic merging @, i.e., it finds the

pergraphH that is a merging ofz with some edges block hypergraph as desired.

deleted, and a patl® in H. Initially H is the given As in Section 2 we give a list-based implementa-

graphG. tion that achieves linear time. The data structure is
If H has no edges stop. Otherwise start a new illustrated in Fig. 4. As before assume the vertices

path P by choosing an edgfv, w} and settingP = of G are numbered by consecutive integers from 1

112

B S |

—| 1 —| 1

o | =z

= ™3

=5 5

—>_ |
4 4
(a) (b)

H.N. Gabow / Information Processing Letters 74 (2000) 107-114

] 1]
=N —={,
-3 -3 |
)

4| 4|
=0 —6
~ b

(c) (d)

Fig. 4. (a)—(d) illustrate the data structure for Fig. 3(b)—(e), respecti§elp.and/ are represented as in Fig. 2. Every other arrowheag8l isf
drawn filled. For example, in (a) the algorithm redd&] = 2 and then merges cycle 2 5, 4 to get (b). In (d)/[6] and /[7] change to 8, the

number of the first biconnected component.

to n. The algorithm numbers the biconnected compo-
nents ofG by consecutive integers startingrat- 1.
The biconnected components are represented by as
signing a number/[v] to each vertexv in such a
way that each edge, w} belongs to the biconnected
component with number mfii[v], I[w]} (see (5) be-
low).

Two stacks are used to represent the pattStack
S contains the vertice¥ (P) and stackB represents
the boundaries between edgesiftwo vertices per
boundary. More specifically and B correspond to

P =(vy,e1,..., 0,),

whereTORB) =2k and fori =1, ...k,

vi = S[B[2i —1]]; (3)

ei —vi = {S[j1: B[2i]< j < B[2i +2]}. (4)
Thus in Fig. 4 the open arrows @ point to the
verticesv; of P. The filled arrows demarcate the sets
e; — v;; these sets are the “nonfirst” vertices of edges
e; of P. When P is nonempty we haveé[i] =i for

i =1,2. Also when =k in (4) we interpretB[2k + 2]

to beTORS) + 1.

As in the strong components algorithm an ariay

stores stack indices as well as biconnected component

numbers. More precisely for a given vertexat any
pointin time,

0
J
c

if v has never been iR;
if vis currently inP andS[j] = v;
if the last biconnected

component containing has been
output and numbered as

I[v] =)

As before there can be no confusion between an index
Jj and a component numberin (5). A variablec is
used to keep track of the component numbers.

The algorithm consists of a main routiB#CONN
and a recursive procedud-S

procedure BICONNG)

1. empty stacks and B;

2.forveVdolI[v]=0;

3. c=n;

4. for v e V doif I[v] =0 andv is not isolated
then DFSv);

procedure DFS(v)
1. PUSHu, S); I[v] = TORS);
if I[v] > 1then PUSHI[v], B);
[* create a filled arrow orB */
2. for edgeqv, w} € E do

3. if Ifw]=0then {PUSHI[v], B); DFSw)
/* create an open arrow oB */}
4. elsel* possible merge */

while I{v] > 1 and/[w] < B[TORB) — 1] do
{PORB); PORB)};
5. if I[v] = 1then I[PORS)] = ¢

H.N. Gabow / Information Processing Letters 74 (2000) 107-114

6. else ifI[v] = B[TORB)] then{
7. PORB); PORB); increase: by 1;
8. while I[v] < TORS) do I[PORS)] = c};

In many situations lind4 can be simplified: IIG
is known to be a connected grap¥ can be replaced
by a single calDFS(v) (for any vertexv). If G has
no isolated vertices, i.e., every vertex is on at least
one edge, the second part of tiidest of B4 can be
dropped. Also moving the code f@FSfor the case
I[v] > 1 into B4 allowsDFSitself to be simplified.

Theorem 3.1. When BICONNG) halts any edge
{v,w} € E belongs to the biconnected component
numberedmin{/[v], I[w]}. The time and space are
bothO(m + n).

Proof. The argument is similar to Theorem 2.1 and
uses the conventions introduced in that proof. We
prove the first assertion of the theorem by showing that
BICONN:Is a valid implementation of the high-level
algorithm.

We first specify how the high-level algorithm
chooses the paiv, {v, w} to grow P. Say a vertex
w € V becomesctivethe first time it gets added to
P. As before thenost activevertex is the currently ac-

113

V(P) — ex thenw is currently active. To show this
note thatw € V (P) impliesw has been activated. Also

w ¢ e impliesw, {w, v} has not been chosen to grow
P (since after an edge is chosen, its ends belong to a
common edge oP). This impliesw is still active.

Now we prove thaBICONNimplements the above
version of the high-level algorithm. We assume that
H, P and the deleted biconnected components are as
specified by (3)—(5). The argument is by induction
on the number of statements executedBICONN
We only mention the most important points about the
various statements, leaving the remaining details of the
induction to the reader.

WhenB4 is being executed? is empty. During the
execution of the loop db2, v is the most active vertex.
(Note that if I[v] = 1 then P is empty during the
execution oD2. In this case we also hal®RS) = 1
andTORB) =0.)

In D3 supposd [w] > n. Then the last biconnected
component containingy has been deleted arid4
does nothing. Suppose © I{w] < n. If w € ¢
then ITw] > I[vx] = B[2k — 1] (by (3)) soD4 does
nothing. In the remaining case choose indexso
w € ¢; —viy1, 1 <i < k. As noted for the high-level
algorithm,w is an active vertex irV (P). Our choice

tive vertex that was activated most recently. To choose rule impliesv; 1 is the most recently activated vertex

v, {v, w}, let v be the most active vertex. Choose a
previously unchosen edde, w}. If all edges incident
to v have been chosen then deactivatéf P is non-
empty and this makes all vertices @f — v inactive
then outpute, as the next edge of the block hyper-
graph.

Note that it is possible to have empty and a vertex
v active. This can occur ib was the previous first
vertex of P. In this case the above strategy starts a
new pathP = (v, {v, w}) by adding an edge incident
to v. On the other hand it is possible to haReempty
and no vertex active. In this case when a new path
P = (v, {v, w}) is started, by convention becomes
active beforew. This convention ensures that the most
active vertex is always unique.

This strategy correctly implements the high-level
algorithm. To prove this we need only check that when
P is nonemptyv € ¢; — vk, for v the most active
vertex.

We will use another property of the implementation:
When it chooses the pair, {v, w} to grow P, if w €

of ¢; that is still active. Thud [v;+1] > I[w] = I[v;].
Equivalently by (3),B[2i + 1] > I[w] > B[2i — 1].
This showd4 merges the same cycle as the high-level
algorithm.

The test 0D6 checks whether or not the last edge
of P consists ofv and its successors @ plus vertex
vr. HenceD8 labels vertices according to (5).

For the time and space bounds observe that every
nonisolated vertex is pushed onfoexactly once. It
is also pushed onto an even entry®fat most once.
Hence it is easy to see that the algorithm spends O
time on each vertex or edge

Comparing our code to the algorithm of [23], our
stack S (which has at most entries) corresponds to
a stack of edges (which has at maestentries). Our
sizen array! corresponds to a similar array that holds
depth-first discovery numbers. Our stagiwhich has
at most 2 entries) corresponds to a sizearray that
holds LOWPOINT values.

114

Acknowledgments

We thank San Skulrattanakulchai for helpful sug-
gestions.

Appendix A. Characterization of the block
hypergraph

Lemma A.1. The block hypergraph of a grapé is
the finest acyclic merging @f.

Proof. We first show the block hypergrapH is
acyclic. A biconnected component6fis a connected
subgraph ofG. Hence a cycle inH gives a cycle
in G that contains edges from at least two distinct
biconnected components. This is impossible.

To showH is the finest acyclic merging |&X be an
acyclic merging ofG. Any cycle of G is contained
entirely in one edge ofK. Thus any biconnected
component is contained in one edgekdf O

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analy-
sis of Computer Algorithms, Addison-Wesley, Reading, MA,
1974.

[2] A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and
Algorithms, Addison-Wesley, Reading, MA, 1983.

[3] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-
Holland, New York, 1989.

[4] G. Brassard, P. Bratley, Algorithmics: Theory & Practice,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[5] G. Brassard, P. Bratley, Fundamentals of Algorithmics,
Prentice-Hall, Englewood Cliffs, NJ, 1996.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to
Algorithms, McGraw-Hill, New York, 1990.

[7] S. Even, Graph Algorithms, Computer Science Press, Potomac,
MD, 1979.

H.N. Gabow / Information Processing Letters 74 (2000) 107-114

[8] H.N. Gabow, Path-based depth-first search for strong and bi-
connected components, Tech. Report CU-CS-890-99, revised
version, Dept. of Computer Science, University of Colorado at
Boulder, 2000.

[9] H.N. Gabow, R.E. Tarjan, A linear-time algorithm for a special
case of disjoint set union, J. Comput. System Sci. 30 (2) (1985)
209-221.

[10] J.E. Hopcroft, R.E. Tarjan, Dividing a graph into triconnected
components, SIAM J. Comput. 2 (1973) 135-158.

[11] J.E. Hopcroft, R.E. Tarjan, Efficient planarity testing,
J. ACM 21 (4) (1974) 549-568.

[12] F. Harary, Graph Theory, Addison-Wesley, Reading, MA,
1969.

[13] E. Horowitz, S. Sahni, S. Rajasekaran, Computer Algorithms,
Computer Science Press, New York, 1998.

[14] D.E. Knuth, The Stanford Graphbase: A Platform for Combi-
natorial Computing, Addison-Wesley, Reading, MA, 1993.

[15] L. Lovasz, Combinatorial Problems and Exercises, 2nd edn.,
North-Holland, New York, 1993.

[16] U. Manber, Introduction to Algorithms: A Creative Approach,
Addison-Wesley, Reading, MA, 1989.

[17] K. Mehlhorn, Data Structures and Algorithms 2: Graph Algo-
rithms and NP-Completeness, Springer, New York, 1984.

[18] I. Munro, Efficient determination of the strongly connected
components and transitive closure of a directed graph, Depart-
ment of Computer Science, University of Toronto, 1971.

[19] P.W. Purdom, A transitive closure algorithm, Tech. Report
33, Computer Sciences Department, University of Wisconsin,
Madison, WI, 1968.

[20] H.E. Robbins, A theorem on graphs with an application to a
problem of traffic control, Amer. Math. Monthly 46 (1939)
281-283.

[21] R. Sedgewick, Algorithms in C, Addison-Wesley, Reading,
MA, 1990.

[22] M. Sharir, A strong-connectivity algorithm and its application
in data flow analysis, Comput. Math. Appl. 7 (1) (1981) 67—72.

[23] R.E. Tarjan, Depth-first search and linear graph algorithms,
SIAM J. Comput. 1 (2) (1972) 146-160.

[24] R.E. Tarjan, Efficiency of a good but not linear set union
algorithm, J. ACM 22 (2) (1975) 215-225.

[25] M.A. Weiss, Data Structures and Algorithm Analysis in C++,
Addison-Wesley, Reading, MA, 1999.

