
Information Processing Letters 74 (2000) 107–114

Path-based depth-first search for strong and
biconnected components

Harold N. Gabow1

Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA

Received 19 October 1999; received in revised form 1 March 2000
Communicated by S.E. Hambrusch

Keywords:Graph; Depth-first search; Strongly connected component; Biconnected component; Stack; Algorithms

1. Introduction

Depth-first search, as developed by Tarjan and co-
authors, is a fundamental technique of efficient al-
gorithm design for graphs [23]. This note presents
depth-first search algorithms for two basic problems,
strong and biconnected components. Previous algo-
rithms either compute auxiliary quantities based on the
depth-first search tree (e.g., LOWPOINT values) or re-
quire two passes. We present one-pass algorithms that
only maintain a representation of the depth-first search
path. This gives a simplified view of depth-first search
without sacrificing efficiency.

In greater detail, most depth-first search algorithms
(e.g., [23,10,11]) compute so-called LOWPOINT val-
ues that are defined in terms of the depth-first search
tree. Because of the success of this method LOW-
POINT values have become almost synonymous with
depth-first search. LOWPOINT values are regarded as
crucial in the strong and biconnected component algo-
rithms, e.g., [14, pp. 94, 514]. Tarjan’s LOWPOINT
method for strong components is presented in texts [1,
7,14,16,17,21]. The strong component algorithm of
Kosaraju and Sharir [22] is often viewed as conceptu-

1 Email: hal@cs.colorado.edu.

ally simpler but it requires two passes over the graph.
It is presented in texts [2,4,6,25]. Tarjan’s LOW-
POINT biconnected component algorithm is presented
in texts [1,2,4,5,7,13,14,16,17,21,25]. A two-pass bi-
connected component algorithm of Micali that avoids
LOWPOINT values is sketched in [7, pp. 67–68].

This paper presents strong and biconnected compo-
nent algorithms that are based on the depth-first search
path. This natural approach appears to have first been
proposed by Purdom [19] and Munro [18] for strong
components. It is regarded as requiring an extra data
structure for set merging in order to be asymptotically
efficient, and hence unlikely to be efficient in prac-
tice [23]. We present linear-time implementations of
this approach for both strong and biconnected compo-
nents. Our implementations use only stacks and arrays
as data structures. A line-by-line pseudocode compar-
ison of our algorithms with the tree-based algorithms
of [23] shows the two approaches are similar in terms
of lower level resource usage; performance differences
are likely to be small or platform-dependent. Our algo-
rithms show that the simpler path-based view of depth-
first search suffices for these properties.

One can design other path-based depth-first search
algorithms for properties such as ear decomposi-
tion [15], st-numbering [7], topological numbering,

0020-0190/00/$ – see front matter 2000 Published by Elsevier Science B.V. All rights reserved.
PII: S0020-0190(00)00051-X



108 H.N. Gabow / Information Processing Letters 74 (2000) 107–114

Fig. 1. (a) DigraphG. (b)–(e) PathP (solid edges) in the first several steps of the algorithm. Strong component{3} is output in (d).

etc. The complete version of this paper [8] includes an
algorithm to find the bridges of an undirected graph,
leading to an immediate proof of Robbins’ Theo-
rem [20]. It also includes a simple articulation points
algorithm, and a previously unpublished strong com-
ponent algorithm of Tarjan that can be interpreted as
path-based.

Section 2 presents our strong component algorithm
and Section 3 presents the biconnected component
algorithm. Appendix A proves a simple property of
biconnected components. We conclude this section
with some terminology.

Singleton sets are usually denoted by omitting set
braces, e.g., for a setS and elementx, S − x denotes
S−{x}. We assume all input graphs containn vertices
andm edges.

We use the following operations to manipulate a
stackS: PUSH(x, S) addsx to S at the (new) top ofS.
POP(S) removes the value at the top of the stack and
returns that value.TOP(S) is the index of the value at
the top of the stack. HenceS[TOP(S)] is the value at
the top of the stack.

2. Strong components

Consider a digraphG = (V ,E). Two vertices are
in the samestrong componentof G if and only if
they are mutually reachable, i.e., there is a path from
each vertex to the other. Thestrong component graph

is formed by contracting the vertices of each strong
component. Equivalently the strong component graph
is the acyclic digraph, formed by contracting vertices
ofG, that has as many vertices as possible. In short we
say the strong component graph is the finest acyclic
contraction ofG.

This characterization suggests the following high-
level algorithm to find the strong component graph of
G = (V ,E). See Fig. 1. The algorithm maintains a
graphH that is a contraction ofG with some vertices
deleted. It also maintains a pathP in H . Initially H is
the given graphG.

If H has no vertices stop. Otherwise start a new
pathP by choosing a vertexv and settingP = (v).
Continue by growingP as follows.

To grow the pathP = (v1, . . . , vk) choose an edge
(vk,w) directed from the last vertex ofP and do the
following:

• If w /∈ P , addw to P , making it the new last vertex
of P . Continue growingP .
• If w ∈ P , sayw = vi , contract the cyclevi, vi+1,

. . . , vk , both inH and inP . P is now a path in the
new graphH . Continue growingP .
• If no edge leavesvk , outputvk as a vertex of the

strong component graph. Deletevk from bothH
andP . If P is now nonempty continue growingP .
Otherwise try to start a new pathP .

It is easy to see that this algorithm forms the finest
acyclic contraction ofG. (For instance if no edge



H.N. Gabow / Information Processing Letters 74 (2000) 107–114 109

Fig. 2. (a)–(d) show the data structure for Fig. 1(b)–(e), respectively. StackS is shown. Arrows to the left ofS represent stackB. Arrows to the
right of S represent the entries ofI that are used in contract steps. For example, in (a) the algorithm readsI [2] = 2 and then contracts cycle
2,4,5 to get (b). In (c)I [3] changes from 6 to 7, the latter being the strong component number of vertex 3.

leavesvk then vk is a vertex of the finest acyclic
contraction.) Thus the algorithm correctly computes
the strong components.

This high-level algorithm was originally proposed
by Purdom [19] and Munro [18]. The time for an ef-
ficient implementation is dominated by the time to
keep track of the new vertices formed by contraction
operations. Any data structure for disjoint set merg-
ing [6] can be used for this purpose. Purdom [19] and
Munro [18] use simple set-merging data structures,
achieving total time O(n2) and O(m+n logn), respec-
tively. Tarjan has shown set merging can be more ef-
ficiently, giving total time O(mα(m,n) + n) [24]. In
fact the incremental tree set merging algorithm of [9]
can be used. This reduces the time to O(m+ n), giv-
ing a linear-time algorithm to find strong components.
However the overhead of using incremental tree set
merging may be significant in practice. Also the incre-
mental tree algorithm requires a RAM machine and
does not apply to a pointer machine. Now we give a
simple list-based implementation that achieves linear
time. The data structure is illustrated in Fig. 2.

Assume the vertices of the given graphG are
numbered by consecutive integers from 1 ton. The
algorithm numbers the strong components ofG by
consecutive integers starting atn + 1. It records the
strong component number for each vertex (see (2)
below).

Two stacks are used to represent the pathP . Stack
S contains the sequence of (original) vertices inP and
stackB contains the boundaries between contracted

vertices. More specificallyS andB correspond toP =
(v1, . . . , vk) wherek = TOP(B) and fori = 1, . . . , k,

vi =
{
S[j ]: B[i]6 j < B[i + 1]}. (1)

Whenk > 0 we haveB[1] = 1. Also wheni = k in (1)
we interpretB[k + 1] to beTOP(S)+ 1.

An array I [1..n] is used to store stack indices. It
also stores the strong component number of a vertex
when that number is known. More precisely for a
given vertexv at any point in time,

I [v] =


0 if v has never been inP ;

j if v is currently inP andS[j ] = v;
c if the strong component containingv

has been deleted and numbered asc.
(2)

Since there are onlyn vertices, there can be no
confusion between an indexj and a component
numberc in (2). A variablec is used to keep track
of the component numbers.

The algorithm consists of a main routineSTRONG
and a recursive procedureDFS:

procedureSTRONG(G)
1. empty stacksS andB;
2. for v ∈ V do I [v] = 0;
3. c= n;
4. for v ∈ V do if I [v] = 0 then DFS(v);

procedureDFS(v)
1. PUSH(v, S); I [v] = TOP(S); PUSH(I [v],B);

/* addv to the end ofP */



110 H.N. Gabow / Information Processing Letters 74 (2000) 107–114

2. for edges(v,w) ∈E do
3. if I [w] = 0 then DFS(w)
4. else/* contract if necessary */

while I [w]<B[TOP(B)] do POP(B);
5. if I [v] = B[TOP(B)] then

{/* number vertices of the next
strong component */

6. POP(B); increasec by 1;
7. while I [v]6 TOP(S) do I [POP(S)] = c};

Theorem 2.1. WhenSTRONG(G) halts each vertex
v ∈ V belongs to the strong component numbered
I [v]. The time and space are bothO(m+ n).

Proof. We will prove the first assertion of the theorem
by showing thatSTRONGis a valid implementation
of the high-level algorithm. We begin by specifying
how the high-level algorithm will choose the edge
(vk,w) to growP . Say that a vertexw ∈ V becomes
active(alternatively,gets activated) when it gets added
to P as the new last vertex. Themost activevertex
is the currently active vertex that was activated most
recently. To choose the next edge(vk,w) let v be
the most active vertex. Choose a previously unchosen
edge directed fromv, and use the corresponding
edge ofH as (vk,w). If all edges directed fromv
have been chosen then deactivatev. If this makes all
vertices ofvk inactive then outputvk as the next strong
component.

We must verify that this strategy correctly imple-
ments the high-level algorithm. This is easily done by
verifying thatv is a vertex ofvk , i.e., the most active
vertex always belongs to the last vertex ofP .

Now we prove thatSTRONGimplements this ver-
sion of the high-level algorithm. We assume thatH , P
and the deleted strong components are as specified by
(1)–(2). The argument is by induction on the number
of statements executed inSTRONG. We will mention
some points about the various statements and leave the
remaining straightforward details of the induction to
the reader. We refer to lines of pseudocode by the ini-
tial of the procedure name followed by the line number
e.g.,D7 is the last line ofDFS.

When S4 is being executed,P is empty. (By
convention the execution of a line or a statement
excludes the execution of any recursive call.) During
the execution of the loop ofD2, v is the most active
vertex.

In D3 if 0< I [w] 6 n thenD4 contracts a cycle or
does nothing if(v,w) has already been contracted. If
I [w] > n then the component containingw has been
deleted andD4 does nothing.

We turn to showing that the time and space are
O(m + n). We assume the given graphG is stored
as a collection of adjacency lists. Observe that every
vertex is pushed onto and popped from each stackS,B
exactly once. Hence it is easy to see that the algorithm
spends O(1) time on each vertex or edge.2

Comparing our code to the algorithm of [23], both
methods use stackS; our sizen arrayI corresponds
to a similar array that holds depth-first discovery
numbers; our stackB corresponds to a sizen array
that holds LOWLINK values. BothS andB contain at
mostn entries at any time.

An algorithm almost identical toSTRONGfinds
the bridges of an undirected graph. The high-level
algorithm is based on the fact that contracting the
vertices of a cycle does not change the bridges of a
graph. The details are given in [8].

3. Biconnected components

We present our algorithm for biconnected compo-
nents in the language of hypergraphs. This is not log-
ically necessary but it brings out the similarity to the
strong components algorithm.

We start by reviewing basic definitions about hy-
pergraphs [3,15]. AhypergraphH = (V ,E) consists
of a finite setV of verticesand a finite setE of
edges, each edge a subset ofV . A path is a sequence
(v1, e1, . . . , vk, ek) of distinct verticesvi and distinct
edgesei , 16 i 6 k, with v1 ∈ e1 andvi ∈ ei−1∩ ei for
every 1< i 6 k. The set of all vertices in edges ofP
is denoted

V (P)=
k⋃
i=1

ei.

A cycleis a path with the additional properties thatk >

1 andv1 ∈ ek . A hypergraph isacyclicif it contains no
cycle.

Notice that in a pathP each vertexvi+1, 16 i < k
belongs toei−vi . For this reason the setsei−vi figure
prominently in our algorithm (e.g., see (4) below).
The algorithm also uses this operation on hypergraphs:



H.N. Gabow / Information Processing Letters 74 (2000) 107–114 111

Fig. 3. (a) Undirected graphG. (b)–(e) PathP (solid edges) in the first several steps of the algorithm. Biconnected component{5,6,7} is output
in (e).

To mergea collection of edgesei , i = 1, . . . , k, add
a new edge

⋃k
i=1 ei and delete every edge ofE

contained in it (e.g.,ei ). A mergingof hypergraphH
is a hypergraph formed by doing zero or more merges
onH .

Now consider an undirected graphG = (V ,E).
Two distinct edges are in the samebiconnected com-
ponentof G if and only if some simple cycle con-
tains both of them. This relation is easily seen to
be an equivalence relation over the edges, so the bi-
connected components are well-defined. The “block-
cutpoint tree” of a graph represents the biconnected
components and cutpoints [12]. We will use a hyper-
graph variant of this notion: Theblock hypergraphH
ofG is the hypergraph formed by merging the edges of
each biconnected component ofG.H is an acyclic hy-
pergraph. In factH can be characterized as the finest
acyclic merging ofG, i.e., it is the acyclic hypergraph
formed by merging edges ofG that has as many hy-
peredges as possible. For completeness this character-
ization is proved in Appendix A.

The characterization suggests the following high-
level algorithm to find the block hypergraph ofG =
(V ,E). See Fig. 3. The algorithm maintains a hy-
pergraphH that is a merging ofG with some edges
deleted, and a pathP in H . Initially H is the given
graphG.

If H has no edges stop. Otherwise start a new
pathP by choosing an edge{v,w} and settingP =

(v, {v,w}) (choose the endv arbitrarily). Continue by
growingP as follows.

To grow the pathP = (v1, e1, . . . , vk, ek) choose
an edge{v,w} 6= ek with v ∈ ek − vk and do the
following:

• If w /∈ V (P), add v, {v,w} to the end ofP .
Continue growingP .
• If w ∈ V (P), sayw ∈ ei − vi+1, merge the edges of

the cyclew,ei, vi+1, ei+1, . . . , vk, ek, v, {v,w} to a
new edgee =⋃k

j=i ej , both inH and inP . P is
now a path ending withe (i.e., (vi , e) has replaced
(vi , ei, . . . , vk, ek)). Continue growingP .
• If no edge leavesek − vk , outputek as an edge of

the block hypergraph. Deleteek fromH and delete
(vk, ek) from P . If P is now nonempty continue
growingP . Otherwise try to start a new pathP .

Correctness of this algorithm is based on two
simple observations: Whenv, {v,w} is added toP
the result is a valid path, by the conditionv ∈ ek −
vk . When edges are merged they form a valid cycle,
by the condition{v,w} 6= ek . Now a straightforward
inductive argument proves the algorithm correctly
forms the finest acyclic merging ofG, i.e., it finds the
block hypergraph as desired.

As in Section 2 we give a list-based implementa-
tion that achieves linear time. The data structure is
illustrated in Fig. 4. As before assume the vertices
of G are numbered by consecutive integers from 1



112 H.N. Gabow / Information Processing Letters 74 (2000) 107–114

Fig. 4. (a)–(d) illustrate the data structure for Fig. 3(b)–(e), respectively.S, B andI are represented as in Fig. 2. Every other arrowhead ofB is
drawn filled. For example, in (a) the algorithm readsI [2] = 2 and then merges cycle 2,3,5,4 to get (b). In (d)I [6] andI [7] change to 8, the
number of the first biconnected component.

to n. The algorithm numbers the biconnected compo-
nents ofG by consecutive integers starting atn + 1.
The biconnected components are represented by as-
signing a numberI [v] to each vertexv in such a
way that each edge{v,w} belongs to the biconnected
component with number min{I [v], I [w]} (see (5) be-
low).

Two stacks are used to represent the pathP . Stack
S contains the verticesV (P) and stackB represents
the boundaries between edges ofP , two vertices per
boundary. More specificallyS andB correspond to

P = (v1, e1, . . . , vk, ek),

whereTOP(B)= 2k and fori = 1, . . . , k,

vi = S
[
B[2i − 1]]; (3)

ei − vi =
{
S[j ]: B[2i]6 j < B[2i + 2]}. (4)

Thus in Fig. 4 the open arrows ofB point to the
verticesvi of P . The filled arrows demarcate the sets
ei − vi ; these sets are the “nonfirst” vertices of edges
ei of P . WhenP is nonempty we haveB[i] = i for
i = 1,2. Also wheni = k in (4) we interpretB[2k+2]
to beTOP(S)+ 1.

As in the strong components algorithm an arrayI
stores stack indices as well as biconnected component
numbers. More precisely for a given vertexv at any
point in time,

I [v] =



0 if v has never been inP ;

j if v is currently inP andS[j ] = v;
c if the last biconnected

component containingv has been
output and numbered asc.

(5)

As before there can be no confusion between an index
j and a component numberc in (5). A variablec is
used to keep track of the component numbers.

The algorithm consists of a main routineBICONN
and a recursive procedureDFS:

procedureBICONN(G)
1. empty stacksS andB;
2. for v ∈ V do I [v] = 0;
3. c= n;
4. for v ∈ V do if I [v] = 0 andv is not isolated

then DFS(v);

procedureDFS(v)
1. PUSH(v, S); I [v] = TOP(S);

if I [v]> 1 then PUSH(I [v],B);
/* create a filled arrow onB */

2. for edges{v,w} ∈E do
3. if I [w] = 0 then {PUSH(I [v],B); DFS(w)

/* create an open arrow onB */ }
4. else/* possible merge */

while I [v]> 1 andI [w]<B[TOP(B)− 1] do
{POP(B);POP(B)};

5. if I [v] = 1 then I [POP(S)] = c



H.N. Gabow / Information Processing Letters 74 (2000) 107–114 113

6. else ifI [v] = B[TOP(B)] then {
7. POP(B); POP(B); increasec by 1;
8. while I [v]6 TOP(S) do I [POP(S)] = c};

In many situations lineB4 can be simplified: IfG
is known to be a connected graphB4 can be replaced
by a single callDFS(v) (for any vertexv). If G has
no isolated vertices, i.e., every vertex is on at least
one edge, the second part of theif test ofB4 can be
dropped. Also moving the code forDFS for the case
I [v]> 1 intoB4 allowsDFSitself to be simplified.

Theorem 3.1. When BICONN(G) halts any edge
{v,w} ∈ E belongs to the biconnected component
numberedmin{I [v], I [w]}. The time and space are
bothO(m+ n).

Proof. The argument is similar to Theorem 2.1 and
uses the conventions introduced in that proof. We
prove the first assertion of the theorem by showing that
BICONNis a valid implementation of the high-level
algorithm.

We first specify how the high-level algorithm
chooses the pairv, {v,w} to grow P . Say a vertex
w ∈ V becomesactive the first time it gets added to
P . As before themost activevertex is the currently ac-
tive vertex that was activated most recently. To choose
v, {v,w}, let v be the most active vertex. Choose a
previously unchosen edge{v,w}. If all edges incident
to v have been chosen then deactivatev. If P is non-
empty and this makes all vertices ofek − vk inactive
then outputek as the next edge of the block hyper-
graph.

Note that it is possible to haveP empty and a vertex
v active. This can occur ifv was the previous first
vertex ofP . In this case the above strategy starts a
new pathP = (v, {v,w}) by adding an edge incident
to v. On the other hand it is possible to haveP empty
and no vertexv active. In this case when a new path
P = (v, {v,w}) is started, by conventionv becomes
active beforew. This convention ensures that the most
active vertex is always unique.

This strategy correctly implements the high-level
algorithm. To prove this we need only check that when
P is nonemptyv ∈ ek − vk , for v the most active
vertex.

We will use another property of the implementation:
When it chooses the pairv, {v,w} to growP , if w ∈

V (P) − ek thenw is currently active. To show this
note thatw ∈ V (P) impliesw has been activated. Also
w /∈ ek impliesw, {w,v} has not been chosen to grow
P (since after an edge is chosen, its ends belong to a
common edge ofP ). This impliesw is still active.

Now we prove thatBICONNimplements the above
version of the high-level algorithm. We assume that
H , P and the deleted biconnected components are as
specified by (3)–(5). The argument is by induction
on the number of statements executed inBICONN.
We only mention the most important points about the
various statements, leaving the remaining details of the
induction to the reader.

WhenB4 is being executed,P is empty. During the
execution of the loop ofD2,v is the most active vertex.
(Note that if I [v] = 1 thenP is empty during the
execution ofD2. In this case we also haveTOP(S)= 1
andTOP(B)= 0.)

In D3 supposeI [w]> n. Then the last biconnected
component containingw has been deleted andD4
does nothing. Suppose 0< I [w] 6 n. If w ∈ ek
then I [w] > I [vk] = B[2k − 1] (by (3)) soD4 does
nothing. In the remaining case choose indexi so
w ∈ ei − vi+1, 16 i < k. As noted for the high-level
algorithm,w is an active vertex inV (P). Our choice
rule impliesvi+1 is the most recently activated vertex
of ei that is still active. ThusI [vi+1]> I [w]> I [vi ].
Equivalently by (3),B[2i + 1] > I [w] > B[2i − 1].
This showsD4 merges the same cycle as the high-level
algorithm.

The test ofD6 checks whether or not the last edgeek
of P consists ofv and its successors onS, plus vertex
vk . HenceD8 labels vertices according to (5).

For the time and space bounds observe that every
nonisolated vertex is pushed ontoS exactly once. It
is also pushed onto an even entry ofB at most once.
Hence it is easy to see that the algorithm spends O(1)
time on each vertex or edge.2

Comparing our code to the algorithm of [23], our
stackS (which has at mostn entries) corresponds to
a stack of edges (which has at mostm entries). Our
sizen arrayI corresponds to a similar array that holds
depth-first discovery numbers. Our stackB (which has
at most 2n entries) corresponds to a sizen array that
holds LOWPOINT values.



114 H.N. Gabow / Information Processing Letters 74 (2000) 107–114

Acknowledgments

We thank San Skulrattanakulchai for helpful sug-
gestions.

Appendix A. Characterization of the block
hypergraph

Lemma A.1. The block hypergraph of a graphG is
the finest acyclic merging ofG.

Proof. We first show the block hypergraphH is
acyclic. A biconnected component ofG is a connected
subgraph ofG. Hence a cycle inH gives a cycle
in G that contains edges from at least two distinct
biconnected components. This is impossible.

To showH is the finest acyclic merging letK be an
acyclic merging ofG. Any cycle ofG is contained
entirely in one edge ofK. Thus any biconnected
component is contained in one edge ofK. 2
References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analy-
sis of Computer Algorithms, Addison-Wesley, Reading, MA,
1974.

[2] A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and
Algorithms, Addison-Wesley, Reading, MA, 1983.

[3] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-
Holland, New York, 1989.

[4] G. Brassard, P. Bratley, Algorithmics: Theory & Practice,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[5] G. Brassard, P. Bratley, Fundamentals of Algorithmics,
Prentice-Hall, Englewood Cliffs, NJ, 1996.

[6] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to
Algorithms, McGraw-Hill, New York, 1990.

[7] S. Even, Graph Algorithms, Computer Science Press, Potomac,
MD, 1979.

[8] H.N. Gabow, Path-based depth-first search for strong and bi-
connected components, Tech. Report CU-CS-890-99, revised
version, Dept. of Computer Science, University of Colorado at
Boulder, 2000.

[9] H.N. Gabow, R.E. Tarjan, A linear-time algorithm for a special
case of disjoint set union, J. Comput. System Sci. 30 (2) (1985)
209–221.

[10] J.E. Hopcroft, R.E. Tarjan, Dividing a graph into triconnected
components, SIAM J. Comput. 2 (1973) 135–158.

[11] J.E. Hopcroft, R.E. Tarjan, Efficient planarity testing,
J. ACM 21 (4) (1974) 549–568.

[12] F. Harary, Graph Theory, Addison-Wesley, Reading, MA,
1969.

[13] E. Horowitz, S. Sahni, S. Rajasekaran, Computer Algorithms,
Computer Science Press, New York, 1998.

[14] D.E. Knuth, The Stanford Graphbase: A Platform for Combi-
natorial Computing, Addison-Wesley, Reading, MA, 1993.

[15] L. Lovász, Combinatorial Problems and Exercises, 2nd edn.,
North-Holland, New York, 1993.

[16] U. Manber, Introduction to Algorithms: A Creative Approach,
Addison-Wesley, Reading, MA, 1989.

[17] K. Mehlhorn, Data Structures and Algorithms 2: Graph Algo-
rithms and NP-Completeness, Springer, New York, 1984.

[18] I. Munro, Efficient determination of the strongly connected
components and transitive closure of a directed graph, Depart-
ment of Computer Science, University of Toronto, 1971.

[19] P.W. Purdom, A transitive closure algorithm, Tech. Report
33, Computer Sciences Department, University of Wisconsin,
Madison, WI, 1968.

[20] H.E. Robbins, A theorem on graphs with an application to a
problem of traffic control, Amer. Math. Monthly 46 (1939)
281–283.

[21] R. Sedgewick, Algorithms in C, Addison-Wesley, Reading,
MA, 1990.

[22] M. Sharir, A strong-connectivity algorithm and its application
in data flow analysis, Comput. Math. Appl. 7 (1) (1981) 67–72.

[23] R.E. Tarjan, Depth-first search and linear graph algorithms,
SIAM J. Comput. 1 (2) (1972) 146–160.

[24] R.E. Tarjan, Efficiency of a good but not linear set union
algorithm, J. ACM 22 (2) (1975) 215–225.

[25] M.A. Weiss, Data Structures and Algorithm Analysis in C++,
Addison-Wesley, Reading, MA, 1999.


