
AWK_API(3) AWK_API(3)

NAME
awk_api — API for accessing AWK interpreter internals

SYNOPSIS
#include <stdlib.h>

#include "awk_api.h"

typedef ... awknum_t; /* numeric values */

typedef ... awk_val_t; /* awk values, number or string */

typedef ... awk_array_cookie_t; /* hook for array access */

typedef ... awk_elem_t; /* single array element */

typedef ... awk_array_t; /* a flattened-out awk array */

typedef ... awk_param_t; /* a function parameter */

typedef void (*awk_extenfunc_t)(awk_val_t *retval,

size_t nparams, awk_param_t *params);

const awk_val_t *awk_get_elem(awk_array_cookie_t array,

const char *indexval, size_t indexlen);

size_t awk_get_elem_count(awk_array_cookie_t array);

awk_array_t *awk_get_array(awk_array_cookie_t array);

const char *awk_add_C_func(const char *name, awk_extenfunc_t funcp);

void awk_atexit(void (*funcp)(void *arg0), void *arg);

DESCRIPTION
This document describes theawk internals API. It is for use by extension functions that wish to be dynami-
cally linked into anyawk interpreter that supports this API.

Design Goals
After discussion with otherawk maintainers, it was decided that simplicity and smallness should be pri-
mary goals for this API. In particular, the main point of this API is forawk to call out to C,without pro-
viding any access to facilities within the interpreter. Thus, this API purposely does not provide facilities to
access Awk variables, built-in functions, user-defined functions, record management, control flow, or regu-
lar expression matching.

String Values
In this API, all string values may be assumed to have a terminating 0 byte.However, C functions should
not assume that embedded 0 bytes are absent, and should always perform operations based on the provided
string length, instead of naively usingstrlen(3) on any character pointer.

Any string values created by an extension function should include the terminating byte, although length val-
ues should only include the actual number of characters in the string.

Memory Ownership
Furthermore, all pointers to variable names, variable string values, and array index string values should be
treated asread-only; it is assumed that they point into internal data structures, and extension functions
should not attempt to modify the data.

VALUES
Awk values are described by the following structure:

/* A numeric value. At least a C double */

typedef double awknum_t; /* typedef’ed against future changes */

/* Bits for use in flags in a value. */

typedef enum {

NUM = 1, /* type is numeric: mutually exclusive to STR */

STR = 2, /* type is string: mutually exclusive to NUM */

REQUEST FOR COMMENTS 3 Jan 2009 1

AWK_API(3) AWK_API(3)

NUMCUR = 4, /* optimization: numeric value is current */

STRCUR = 8, /* optimization: string value is current */

} awk_val_flags;

/* Return printable representation of value flags. */

extern const char *awk_val_flags2str(int flags);

/*

* An awk value. This has a type of either numeric or string.

* The "other" value may also be current, as an optimization.

*/

typedef struct {

short flags; /* bitwise OR of awk_val_flags values */

awknum_t numval; /* numeric value */

const char *strval; /* string value */

const size_t strlen; /* string length */

} awk_val_t;

Values are used directly in function parameters, and in array elements.

ARRAYS
Awk arrays can potentially be quite large. For this reason, extension functions receive a ‘‘cookie’’ repre-
senting just a handle for an array. Extension functions can lookup a single index in an array, or request that
the array be ‘‘flattened’’ i nto a C array representing every element.

/*

* For efficiency, awk arrays are not flattened unless explicitly

* requested. Thus, C functions initially receive just an

* array cookie.

*/

typedef void *awk_array_cookie_t;

/*

* This returns a constant pointer to the given element value

* if it’s in the array, NULL otherwise.

*/

const awk_val_t *awk_get_elem(awk_array_cookie_t array,

const char *indexval, size_t indexlen);

/*

* This returns the number of elements in the array.

*/

size_t awk_get_elem_count(awk_array_cookie_t array);

When an array is flattened, each element looks like this:

typedef enum {

/* These flags are mutually exclusive! */

DELETED = 1, /* element removed by called C function */

REPLACED = 2, /* element *value* changed by called C function */

} awk_elem_flags;

/* Return printable representation of elem flags. */

extern const char *awk_elem_flags2str(int flags);

/* Single awk array elements */

typedef struct {

REQUEST FOR COMMENTS 3 Jan 2009 2

AWK_API(3) AWK_API(3)

short flags; /* one of the values in awk_elem_flags */

const char *indexstr; /* index string, array indices are *always* strings */

size_t indexlen; /* length thereof */

awk_val_t value; /* original element value */

awk_val_t newvalue; /* new value if REPLACED is in flags */

} awk_elem_t;

Initially, theflags member is set to zero. If an extension function wishes to delete an element, it should
set flags to DELETED. To replace an element’s value, the extension function should setflags to
REPLACED and fill in thenewvalue element of the structure.(The originalvalue element should not
be touched; the interpreter will release its resources.) If a string value is supplied, the text of the string
must come frommalloc(3), and the interpreter will accept further responsibility for the memory.

A full array is represented by this structure:

/* Awk arrays */

typedef struct {

size_t elem_count; /* number of elements in the array */

awk_elem_t *elems; /* dynamically allocated */

size_t new_count; /* if set to non-zero, brand new elements were added */

awk_elem_t *newelems; /* these are the new elements, each one has flag == 0 */

} awk_array_t;

/*

* This "flattens" the array represented by the cookie into

* an awk_array_t for access by the C function.

*/

awk_array_t *awk_get_array(awk_array_cookie_t array);

Theawk_get_array() function ‘‘flattens’’ the array referred to by thearray cookie into a linear array
of C structures. If an extension function wishes to add elements to the array, it should setnewcount to
the appropriate value, and setnewelems to array ofawk_elem_t structures, each of which is filled in
appropriately. All storage for the new elements, including the array of structures, the index string values,
and any element string values, must also come frommalloc(3), and the interpreter accepts further responsi-
bility for the memory.

FUNCTION PARAMETERS
At the Awk level, a parameter may receive its value from one of three sources:

1. A scalar variable. Thevalue of the scalar is passed by value. Cextension functions receive such a
parameter but should not modify the contents of the value.

2. An array. In Awk, the array is passed by reference.C extension functions receive an array cookie which
may be used to access or modify the array, as described in the previous section.

3. An uninitialized variable. Ifan Awk function uses a parameter derived from such a variable as an array,
the original variable becomes an array and cannot then be used as a scalar.

On the other hand, if an Awk function uses a parameter derived from an uninitialized variable as a
scalar, the original variable cannot then be used as an array.

This API allows C functions to provide the same semantics.

The following structure defines parameter values:

/* Bits for use in flags in a function parameter */

typedef enum {

UNTYPED = 1, /* value is not typed in awk program */

SCALAR = 2, /* value was or is changed to scalar */

ARRAY = 4, /* value was or is changed to array */

REQUEST FOR COMMENTS 3 Jan 2009 3

AWK_API(3) AWK_API(3)

ARRAY_CHANGED = 8, /* array was modified */

} awk_param_flags;

/* Return printable representation of elem flags. */

extern const char *awk_elem_flags2str(int flags);

typedef struct {

short flags; /* bitwise OR of awk_param_flags */

union {

awk_val_t p_val; /* by value value if SCALAR */

awk_array_cookie_t p_arr; /* by reference array if ARRAY */

} u;

} awk_param_t;

#define param_val u.p_val

#define param_arr u.p_arr

A C extension function that receives an UNTYPED value must OR in the type flag if it changes it.This
allows the interpreter to realize that the type was changed.

ADDING C EXTENSION FUNCTIONS
There are two steps involved in adding an extension function. The first is to write the function itself.The
second is to install it into the interpreter.

Writing C Extension Functions
An extension function should have the following signature:

void myextension(awk_val_t *retval, size_t nparams, awk_param_t *params);

I.e., the first parameter is pointer to a return value structure, which the extension function will fill in appro-
priately. If a string value is returned, the memory must come frommalloc(3), and the interpreter will
assume responsibility for the memory.

The second value is the number of actual parameters passed at the time of the function call. This may be
more or less than the number of arguments that the function expects; it is up to the function to issue any
diagnostics or return an error value of some kind if this is a problem.

The third value is pointer to an array of parameter structures, as described in the previous section.For con-
venience, theawk_api.h header file provides thistypedef:

typedef void (*awk_extenfunc_t)(awk_val_t *retval,

size_t nparams, awk_param_t *params);

Installing An Extension Function
The following function adds an extension function into the interpreter:

const char *awk_add_C_func(const char *name, /* function name */

awk_extenfunc_t funcp, /* pointer to C function */

size_t nargs); /* expected number of arguments */

The first parameter is a regular C string with the name of the function. The name must follow Awk naming
conventions in order for the function to be called.It is safe to use a C string constant for this parameter; if
the memory came frommalloc(3), the interpreter doesnot accept responsibility for it!

The second parameter is a pointer to the C extension function.

The third parameter is theexpected number of arguments.

The return value isNULL if the function was correctly installed. Otherwise it is a pointer to a string than
can be printed directly. The error message will have already been translated if the interpreter supports mes-
sage translation.

The awk_add_C_func function should be called from a separate function nameddl_onload which
will be called by the interpreter when loading the extension module.Any other setup functions may be

REQUEST FOR COMMENTS 3 Jan 2009 4

AWK_API(3) AWK_API(3)

called from this function as well.

Hook For Cleanup Actions
The API provides the following ‘‘hook’’ f or cleanup actions:

void awk_atexit(void (*funcp)(void *arg0), void *arg);

The first parameter is a pointer to a callback function returningvoid and accepting avoid * parameter.
The second function is a pointer to arbitrary data that will be passed to the callback function when it’s
called. ProvideNULL if you do not wish to pass any data.

The callback functions are called in Last In First Out (LIFO) order, after the Awk program’sEND block has
finished executing, but before the interpreter itself callsexit(3).

MEMORY MANAGEMENT
It is the intent of this design that memory management responsibilities are clear:Don’t touch my memory; I
accept responsibility for memory you give me. All pointers into Awk values and arraysmust be treated as
read-only. Changed array element values must be dynamically allocated, as must all memory for added
array elements.

Furthermore, for use withgawk, C string functions should not be used, since there may be arbitrary binary
data, including ASCIINUL characters, embedded in array indices and variable string values.

SEE ALSO
Effective AWK Programming

REQUEST FOR COMMENTS
Should theawk_ prefix be removed?

Should all the constants (enum values) have some sort of prefix too?

Should the API usewchar_t instead ofchar for text values?

Should ‘‘constructor’’ f unctions be provided for building the various structures and doing the dynamic
memory management?

Is returning achar * message indicating the error better or worse than trying to define a set oferrno-
style values? (Theidea is that each interpreter implementing the API is then free to have its own set of
error returns.)

Should it be possible to force the interpreter to clean up and exit; for example if an extension function could
not be installed? For the module to callexit(3) itself seems impolite.

What is missing from this interface?

What is extraneous in this interface and should be removed?

What other comments do you have?

Initial discussion should take place in thecomp.lang.awk USENET newsgroup. You may also email
comments toarnold@skeeve.com. Thanks.

REQUEST FOR COMMENTS 3 Jan 2009 5

