AWK_API(3) AWK_API(3)

NAME
awk_api — API for accessing AWK interpreter internals

SYNOPSIS
#i ncl ude <stdlib. h>
#i ncl ude "awk_api . h"

typedef ... awknumt; /* numeric val ues */

typedef ... awk_val t; /* awk val ues, numnber or string */
typedef ... awk_array_cookie_t; /* hook for array access */
typedef ... awk_elemt; /* single array el enment */

typedef ... awk_array_t; /* a flattened-out awk array */
typedef ... awk_paramt; /* a function paraneter */

t ypedef void (*awk_extenfunc_t)(awk_val _t *retval,
size_t nparans, awk_paramt *parans);

const awk_val _t *awk_get _el enm(awk_array_cooki e_t array,

const char *indexval, size_t indexlen);
size_t awk_get_el em count (awk_array_cooki e_t array);
awk_array_t *awk_get _array(awk_array_cookie_t array);

const char *awk_add_C func(const char *name, awk_extenfunc_t funcp);
void awk_atexit(void (*funcp)(void *arg0), void *arg);

DESCRIPTION
This document describes thek internals API. 1t is for use by extension functions that wish to be dynami-
cally linked into anyawk interpreter that supports this API.

Design Goals
After discussion with otheawk maintainers, it s decided that simplicity and smallness should be pri-
mary goals for this API. In particulathe main point of this API is foawk to call out to Cwithout pro-
viding ary access to facilities within the interpretefhus, this APl purposely does not provide facilities to
access Awk variables, built-in functions, user-defined functions, record management, comtial! ribgu-
lar expression matching.

String Values
In this API, all string values may be assumed teeha erminating 0 byte.However, C functions should
not assume that embedded 0 bytes are absent, and sheayd pérform operations based on thevised
string length, instead of nedy usingstrien(3) on ary character pointer.

Any string values created by amtension function should include the terminating byte, although leradith v
ues should only include the actual number of characters in the string.

Memory Owner ship
Furthermore, all pointers to variable names, variable string values, and arratiirfg values should be
treated agead-only; it is assumed that tlyepoint into internal data structures, and extension functions
should not attempt to modify the data.

VALUES
Awk values are described by the following structure:

/* A nuneric value. At least a C double */
t ypedef doubl e awknumt; /* typedef’ ed agai nst future changes */

/* Bits for use in flags in a value. */
t ypedef enum {

NUM =1, /* type is numeric: mutually exclusive to STR */
STR = 2, /* type is string: mutually exclusive to NUM */

REQUEST FOR COMMENTS 3 Jan 2009 1

AWK_API(3) AWK_API(3)

NUMCUR
STRCUR
} awk_val _fl ags;

= 4, /* optimzation: nuneric value is current */
/* optimzation: string value is current */

I
®

/* Return printable representation of value flags. */
extern const char *awk_val flags2str(int flags);

/*
* An awk value. This has a type of either numeric or string.
* The "other" value may al so be current, as an optinization.

*/
t ypedef struct {
short fl ags; /* bitwi se OR of awk_val _flags values */
awknum't nunval ; /* nuneric value */
const char *strval; /* string value */
const size_t strlen; /* string length */
} awk_val _t;

Values are used directly in function parameters, and in array elements.

ARRAYS
Awk arrays can potentially be quite tg. For this reason, extension functions reeea ‘cookie” repre-
senting just a handle for an arragxtension functions can lookup a single irdie an aray, or request that
the array be “flattenedinto a C array representingeey element.

/*
* For efficiency, awk arrays are not flattened unless explicitly
* requested. Thus, C functions initially receive just an
* array cookie.
*/
t ypedef void *awk_array_cookie_t;

/*
* This returns a constant pointer to the given el enent val ue
* if it’s in the array, NULL otherw se.
*/
const awk_val _t *awk_get _el en(awk_array_cooki e_t array,
const char *indexval, size_t indexlen);

/*
* This returns the nunber of elements in the array.
*/
size_t awk_get_el em count (awk_array_cooki e_t array);
When an array is flattened, each element loolesttils:

t ypedef enum {
/* These flags are mutual |y exclusive! */
DELETED =1, /* element renmoved by called C function */
REPLACED = 2, /* element *val ue* changed by called C function */
} awk_el em fl ags;

/* Return printable representation of elemflags. */
extern const char *awk_elem flags2str(int flags);

/* Single awk array el ements */
t ypedef struct {

REQUEST FOR COMMENTS 3 Jan 2009 2

AWK_API(3) AWK_API(3)

short fl ags; /* one of the values in awk_elemflags */

const char *indexstr; /* index string, array indices are *always* strings */
size_t indexlen; /* length thereof */

awk_val _t val ue; /* original elenent value */

awk_val _t newal ue; /* new value if REPLACED is in flags */

} awk_elemt;
Initially, thef | ags member is set to zero. If artension function wishes to delete an element, it should
setfl ags to DELETED. To replace an elemestvalue, the extension function should setags to
REPLACED and fill in thenewval ue element of the structurg(The originalval ue element should not
be touched; the interpreter will release its resources.) If a string value is suppliect tbethe string
must come frommalloc(3), and the interpreter will accept further responsibility for the memory.

A full array is represented by this structure:

/* Awk arrays */
t ypedef struct {

size_t el emcount; /* number of elements in the array */

awk_elemt *el emns; /* dynami cally allocated */

size_t new_count; /* if set to non-zero, brand new el enents were added */

awk_elemt *newel ens; /* these are the new el ements, each one has flag == 0 */
} awk_array_t;

/ *
* This "flattens" the array represented by the cookie into
* an awk_array_t for access by the C function.
*/
awk_array_t *awk_get _array(awk_array_cookie_t array);
Theawk _get _array() function ‘flattens’ the array referred to by tte r ay cookie into a linear array
of C structures. If an extension function wishes to add elements to theiastayuld seimewcount to
the appropriate value, and segwel ens to array ofawk_el em t structures, each of which is filled in
appropriately. All storage for the e elements, including the array of structures, the insteng values,
and aly element string values, must also come froadloc(3), and the interpreter accepts further responsi-
bility for the memory.

FUNCTION PARAMETERS
At the Awk level, a parameter may ree@ its value from one of three sources:

1. A scalar variable. Thevalue of the scalar is passed bgluwe. Cextension functions recet sich a
parameter but should not modify the contents of the value.

2. Anarray In Awk, the array is passed by referen€zextension functions rece an aray cookie which
may be used to access or modify the graay@scribed in the previous section.

3. Anuninitialized \ariable. Ifan Awk function uses a parameter giedi from such a variable as an array
the original variable becomes an array and cannot then be used as a scalar.

On the other hand, if an Awk function uses a parametevatefiom an uninitialized variable as a
scalarthe original variable cannot then be used as an array.
This API allows C functions to provide the same semantics.

The following structure defines parameter values:

/* Bits for use in flags in a function paraneter */
t ypedef enum {

UNTYPED =1, /* value is not typed in awk program */
SCALAR = 2, /* value was or is changed to scalar */
ARRAY = 4, /* value was or is changed to array */

REQUEST FOR COMMENTS 3 Jan 2009 3

AWK _API(3) AWK _API(3)
ARRAY_CHANGED = 8§, /* array was nodified */
} awk_param fl ags;

/* Return printable representation of elemflags. */
extern const char *awk_elem flags2str(int flags);

t ypedef struct {

short fl ags; /* bitwi se OR of awk_param fl ags */
uni on {
awk_val _t p_val; /* by value value if SCALAR */
awk_array_cookie_t p_arr; /* by reference array if ARRAY */
Py
} awk_paramt;
#defi ne param val u. p_val

#define param arr u.p_arr

A C extension function that recgis an UNTYPED value must OR in the type flag if it changes ifThis
allows the interpreter to realize that the type was changed.

ADDING C EXTENSION FUNCTIONS
There are tw geps ivolved in adding an extension function. The first is to write the function itSéké
second is to install it into the interpreter.

Writing C Extension Functions
An extension function should ¥ the following signature:

voi d myextension(awk_val _t *retval, size_t nparanms, awk_paramt *parans);

l.e., the first parameter is pointer to a return value structure, which the extension function will fill in appro-
priately. If a dring value is returned, the memory must come froailoc(3), and the interpreter will
assume responsibility for the memory.

The second alue is the number of actual parameters passed at the time of the function call. This may be
more or less than the number of arguments that the function expects; it is up to the function toyissue an
diagnostics or return an error value of some kind if this is a problem.

The third \alue is pointer to an array of parameter structures, as described in the previous &ecton-
venience, theawk _api . h header file provides thisypedef :

t ypedef void (*awk_extenfunc_t)(awk_val _t *retval,
size_t nparans, awk_paramt *parans);

Installing An Extension Function
The following function adds an extension function into the interpreter:

const char *awk_add_C func(const char *nane, /* function name */
awk_extenfunc_t funcp, /* pointer to C function */
size_t nargs); /* expected number of argunents */

The first parameter is agelar C string with the name of the function. The name mustiodak naming
conventions in order for the function to be calleld.is safe to use a C string constant for this parameter; if
the memory came frommalloc(3), the interpreter doemt accept responsibility for it!

The second parameter is a pointer to the C extension function.
The third parameter is thexpected number of arguments.

The return alue isNULL if the function was correctly installed. Otherwise it is a pointer to a string than
can be printed directlyThe error message will ia dready been translated if the interpreter supports mes-
sage translation.

The awk_add_C f unc function should be called from a separate function nadtecbnl oad which
will be called by the interpreter when loading the extension modiig. other setup functions may be

REQUEST FOR COMMENTS 3 Jan 2009 4

AWK_API(3) AWK_API(3)

called from this function as well.

Hook For Cleanup Actions
The API provides the following “hookf or cleanup actions:
void awk_atexit(void (*funcp)(void *arg0), void *arg);

The first parameter is a pointer to a callback function retunnigd and accepting &oi d * parameter.
The second function is a pointer to arbitrary data that will be passed to the callback function svhen it’
called. Preide NULL if you do not wish to pass wulata.

The callback functions are called in Last In First Out (LIFO) graféer the Awk programs END block has
finished eecuting, but before the interpreter itself caiist(3).

MEMORY MANAGEMENT
It is the intent of this design that memory management responsibilities areDdadrtouch my memory; |
accept responsibility for memory you give me. All pointers into Awk values and arraydust be treated as
read-only Changed array element values must be dynamically allocated, as must all memory for added
array elements.

Furthermore, for use witbawk, C gring functions should not be used, since there may be arbitrary binary
data, including ASCINUL characters, embedded in array indices and variable string values.

SEE ALSO
Effective AWK Programming

REQUEST FOR COMMENTS
Should theawk _ prefix be remwaed?

Should all the constanterjumvalues) hae ome sort of prefix too?
Should the APl usechar _t instead otchar for text values?

Should ‘constructor’ functions be provided for building theanious structures and doing the dynamic
memory management?

Is returning achar * message indicating the error better or worse than trying to define aeset w6-
style walues? (Theadea is that each interpreter implementing the API is then freevi® ittaown set of
error returns.)

Should it be possible to force the interpreter to clean up and exit; for example if an extension function could
not be installed? For the module to &xilt(3) itself seems impolite.

What is missing from this interface?
What is extraneous in this interface and should be vedfo
What other comments do youve2

Initial discussion should takpace in theconp. | ang. awk USENET newvsgroup. Yu may also email
comments tar nol d@keeve. com Thanks.

REQUEST FOR COMMENTS 3 Jan 2009 5

