
Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

TRADITIONAL (?) IMPLEMENTATIONS
OF A PHASE-VOCODER:

THE TRICKS OF THE TRADE

Amalia De Götzen Nicola Bernardini Daniel Arfib

Università di Padova Conservatorio "C.Pollini" LMA-CNRS
Padova, Italy Padova, Italy Marseille, France

corvo@dei.unipd.it nicb@axnet.it arfib@lma.cnrs-mrs.fr

ABSTRACT

Although the use of the phase-vocoder is not a very recent
technique in musical applications and an extensive literature
exists on the subject (cf.[1, 2, 3, 4, 5, 6, 7, 8]), hardly any fairly
complete reference implementation can be found (cf. for
example[9] pp.256-258, where the resynthesis part is performed
through an oscillator bank instead of an iFFT).
This paper describes in depth an implementation of a phase-
vocoder which was entirely coded in MATLAB™ to be added to the
COST-G6—DAfx web site1 as the reference source code
implementation of all phase-vocoder based effects. The code is
licensed in the terms of the General Public License (GPL) used
in open-source projects and can thus be picked up from the COST-
G6—DAfx web site and re-used for further research and
development.

1 INTRODUCTION

The phase-vocoder is a well-known technique that uses
frequency—domain transformations to implement a variety of
digital audio effects (e.g. time-stretching, pitch-shifting, spectral
image processing, etc.). Since its theory is vastly documented
(cf.[2, 4, 5, 8]), we will summarize its functionality very briefly
in this paper.

1.1 How it works

A short-time Fourier transform (STFT) is performed on a
windowed time-domain real signal to obtain a succession of
overlapped spectral frames with minimal side-band effects
(analysis stage). The time delay at which every spectral frame is
picked up from the signal is called the hop size. The time-
domain signal may be rebuilt by performing an inverse Fast-
Fourier transform on all frames followed by a successive
accumulation of all frames (an operation termed overlap-add)
(resynthesis stage).
Knowing the modulus of every bin is not enough: the phase
information is necessary for a perfect recovery of a signal
without modification. Furthermore the phase information allows
an evaluation of ’instantaneous frequencies’ by the measure of
phases between two frames, which is needed for introducing
effects. Thus, in a traditional phase-vocoder implementation the
output of the analysis should be in explicit polar form (moduli
and phases) in order to achieve fine-grain tracking of frame by
frame frequency changes.

1. (//http://echo.gaps.ssr.upm.es/COSTG6/)

Between the analysis and the resynthesis stage a number of
operations may be performed to obtain a multitude of different
effects (e.g. hop size modification, reading direction inversion,
frame shuffling, etc.) Furthermore, keeping track of phase
changes between one frame and the others leads to a finer grain
indication of frequency contours in the input signal — an
information which has proven to be very useful in yet another
category of processing (spectral peak following, etc.)
In summary, here is how a phase vocoder works:

Moduli Phases

processing...

Windowing

Time−domain
Signal

A
na

ly
si

s
Ph

as
e

phase
calculation

overlap−add

Time−domain
Signal R

es
yt

he
si

s
Ph

as
e

IFFTISTFT

STFT
FFT

Figure 1. Phase-Vocoder functionality

As an example, one of the better known phase-vocoder effects is
signal time-stretching without pitch modification. This effect is
obtained by modifying the hop size ratio between analysis and
synthesis.

2 A REAL-LIFE IMPLEMENTATION

As simple as the theory may seem to be, a good implementation
of a phase vocoder contains a significant number of tricks which

DAFX-1

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

often go undocumented as small cooking recipes secrets. The
only way of unveil (at least most of) these small tricks of the
trade is to deliver (and document thoroughly) a full
implementation in open source.
We choose MATLAB™ as an implementation language for several
reasons, mainly:
a. it is a full-fledged mathematical tool available on any

computing platform (and indeed, where the MATLAB™
commercial product is not available, its public-domain open-
source implementation OCTAVE™ may be used with almost
little or no work2)

b. its vector-based syntax hides most of the unimportant
complexities

c. it is one of the languages of choice for the open source effect
implementations which are present on the COST-G6—DAfx
web site

2.1 General implementation idea

The essential idea is to build two MATLAB™ functions
(pv_analyze and pv_synthesize) which are intended to
work as a tightly coupled set. Between these two function calls,
however, any number of manipulations can be performed to
obtain the desired effects:

pv_synthesize

processing...

pv_analyze

Figure 2. Implementation scheme

This implementation allows to build sophisticated time-frequency
domain effects with very simple MATLAB™ scripts which calls the
two above-mentioned functions.

2.2 Implementation basics

Here is what is supposed to happen in our implementation
scheme. The code written in the following paragraphs has been
somewhat cleaned up for the sake of clarity and length. Things
like some error checks, argument processing, heading comments
etc. have been removed. However the essential code is there,
and the reader may refer to the full-blown implementation
available from the COST-G6—DAfx web site.
Keeping in mind that software like this, particularly when
available in open-source, is under constant upgrading and
enhancement, the reader should consider the code included in
this paper as documentation, while the actual upgraded code will
always be the one available via the Internet.

3 THE ANALYSIS PART

The analysis part boils down to:

1 function [Moduli,Phases]=pv_analyze(X,win,hop)
2
3 [nr, nc] = size (X);
4 %

2. OCTAVE™ is available from http://www.che.wisc.edu/octave

5 % compute the window coefficients
6 %
7 WIN_COEF = hanningz(win);
8 %
9 % create a matrix Z whose columns contain the
10 % windowed time-slices
11 %
12 num_win =ceil((nr-win+hop)/hop);
13 %Z= zeros (win,num_win);
14
15 %
16 % now modulate the signal with the window,
17 % frame by frame taking due care that the
18 % signal is zero padded at the end
19 %
20 start = 1;
21 for i = 0:num_win
22 frame_end = win-1;
23 if (start+frame_end >= size(X,1))
24 frame_end = size(X,1)-start;
25 end
26 win_end = frame_end+1;
27 Z = X(start:start+frame_end) .* \

WIN_COEF(1:win_end);
28 FZ(1:win_end,i+1) = fft(fftshift(Z));
29 start = start + hop;
30 end;
31
32 Moduli = abs(FZ);
33 Phases = angle(FZ);
34 end

where:
• X is a vector containing a real signal
• hop is the analysis hop
• Moduli is the returned matrix of moduli
• Phases is the returned matrix of phases
• the for loop performs the actual continuous framing of the
signal (performed at a distance of hop frames one from the
other); actually, as it will be shown later on (cf. the paragraph on
the infinite signal implementation), in real-world
implementations analysis, transformation and synthesis can be
combined and written in a frame by frame setup
Some minor (but influential) elements may be mentioned even in
such a short fragment of code, namely:
• the choice of the proper framing window
• the choice of window and hop size
• fft centering
• correct windowing

3.1 Choice of the framing window

A well-known fact is that framing portions of the signal with
rectangular windows introduces unwanted noise and
discontinuity in its spectrum. Windowing schemes with better
S/N ratio and frequency resolution have been developed to avoid
these problems. In general, a window which is smoother on its
sides will have a wider principal lobe (that is, a worse frequency
resolution), whereas a window with a better frequency resolution
will imply higher sides.

DAFX-2

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

Thus, the choice of the framing window is a tricky one; it often
done considering the better (i.e. less influential) spectral response
of one type over another. These plots

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Time domain

Blackman
Hanning

Hamming

-200

-150

-100

-50

0

50

dB

Frequency domain

Blackman
Hanning

Hamming

Figure 3. Window comparison

show that:
a. the Hamming and Hanning windows provide a spectrum with a

thinner primary lobe (4
NT , where N is the size of the window

and T is the sampling period) than the Blackman window

(6
NT) (cf.[10])

b. the Blackman window provides a better primary
lobe/secondary lobe ratio (57dB) than the Hamming (41dB)
and Hanning (31dB) (cf. ibidem)

However, in phase vocoding the framing window produces also
an overall effect due to the overlap-add procedure during
resynthesis. As can be expected, different types of windows
behave differently in the overlap-add process; just to show some
examples, here is how:
• an overlap-added hanning window behaves with hop/window
ratios set to 3

4
1
2 , 1

3 , 1
4 , 1

5
and 1

8 :

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 3/4

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/2

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/3

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/4

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/5

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/8

Figure 4. Hanning overlap adding

• an overlap-added blackman window behaves with hop/window
ratios set to 3

4 , 1
2 , 1

3 , 1
4 , 1

5
and 1

8 :

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 3/4

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/2

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/3

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/4

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/5

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/8

Figure 5. Blackman overlap adding

• an overlap-added hamming window behaves with hop/window
ratios set to 3

4 , 1
2 , 1

3 , 1
4 , 1

5
and 1

8 :

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 3/4

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/2

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/3

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/4

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/5

0

1

2

3

4

5

0 5000 10000 15000 20000 25000

win/hop ratio = 1/8

Figure 6. Hamming overlap adding

These plots show sev eral interesting properties:
a. the sum of hamming windows presents a discontinuity on both

ends; these discontinuities may have a small impact on long
signals but can be quite present on short ones;

b. the blackman window modulates the signal when used with a

hr ≥ 1
2 where hr is the hop/window size ratio

c. the hamming and hanning windows modulate the signal when

used with a hr > 1
2

d. all windows require (as expected) a variable rescaling factor
according to the hop/window ratio; in this respect, the hanning
and hamming windows seem to behave more linearly, turning
up to something like

R = 1
hr

(1)

where R is the rescaling factor
In the code presented in this paper, we hav e used the hanning
window.

DAFX-3

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

3.2 Choice of window and hop size

A well-known fact is that the choice of the size of the window is
extremely important: since the frequency resolution of an FFT
depends on

Fr = Fs
Ws

(2)

where:
— Fr is the frequency resolution
— Fs is the sampling rate
— Ws is the window size
it is clear that a bigger window will perform a better FFT.
However, in the case of the phase vocoder a bigger FFT is not the
only option to be kept in mind. To avoid the loss of substantial
signal information it is also important to perform a STFT with
many FFTs spreaded over time, that is, to perform a STFT with a
small hop size.

3.3 Fft centering

Performing a FFT of a signal is equivalent to the scalar product
of the signal and a complex exponential. In an FFT the time
vector starts from the left of the window: this means that a pulse
in the middle of the window has a phase of 0 π 0 π 0 π . . .
This is because the cosine components of that impulse have
values +1 − 1 + 1 − 1 . . . in the middle of the window. This
means that the phase will unwrap in opposite directions for odd
and even bins.
In order to have simpler phase relationships, a shift of the signal
around its time origin time origin may be performed through the
fftshift MATLAB™ function.

Phasogram with fftshift Phasogram without ffshift

Figure 7. Phasograms of shifted and non/shifted signals

The above phasograms3 of signals analyzed with and without
prior fftshifting should clarify the simpler phase
relationships of the former analysis.

3.4 Correct Windowing

In an STFT, it is important to ensure that the periodicity of the
framing window is correct: the periodicity of the framing window
should be equal to the declared argument of its function
definition. A hanning window, for example, must begin by a
zero-valued sample and end by a non-zero valued sample (whose

3. phasograms are a representation of phase values with a single-sample analy-
sis hop size

value must be the same as the second sample) - that is, a correct
hanning vector must be:

hanning(n) = [k0 = 0, k1, k2, . . . , kn−1 = k1]; (3)

In MATLAB™, picking up the standard hanning window giv es an
incorrect periodicity, because the boundary samples are non-zero;
in OCTAVE™, both boundary samples are zero, which still gives an
incorrect periodicity.
This is why we use hanningz, a modified version of the
hanning window available with the MATLAB™ toolboxes:
function w = hanningz(n)
w = .5*(1 - cos(2*pi*(0:n-1)’/(n)));

4 THE RESYNTHESIS PART

The resynthesis part is slightly more complicated; a simplified
code looks like this:

1 function X = pv_synthesize(M, P, win, synt_hop, an_hop)
2
3 [num_bins, num_frames] = size(P);
4 delta_phi=zeros(num_bins, num_frames-1);
5 PF=zeros(num_bins, num_frames);
6 window=hanningz(win); % tapering window
7 %
8 % phase unwrapping
9 %
10 two_pi=2*pi;
11 omega = two_pi*an_hop*[0:num_bins-1]’/num_bins;
12
13 for idx=2 : num_frames
14 ddx = idx-1;
15 delta_phi(:,ddx) = \

princarg(P(:,idx)-P(:,ddx)-omega);
16 phase_inc(:,ddx)=(omega+delta_phi(:,ddx))/an_hop;
17 end
18
19 %
20 % now prepare a matrix of complex numbers which
21 % recombine modulo and phases to be able to feed
22 % the ifft algorithms
23 %
24 % the idea here is to use the values of the previous
25 % phases, and calculate the current phases computing
26 % the current phase difference multiplied by the
27 % current hop size
28 %
29
30 PF(:,1)=P(:,1); % the initial phase is the same
31 for idx = 2:num_frames
32 ddx = idx-1;
33 PF(:,idx)=PF(:,ddx)+synt_hop*phase_inc(:,ddx);
34 end;
35 Z=M.*exp(i*PF);
36
37 %
38 % perform inverse windowing and overlap-adding
39 % of the resulting ifft frames
40 %
41
42 X = zeros((num_frames*synt_hop)+win, 1);
43 curstart = 1;
44 for idx = 1:num_frames
45 curend = curstart + win - 1;
46 RIfft = fftshift(real(ifft(Z(:,idx))));
47 X([curstart:curend])= \

X([curstart:curend]+RIfft.*window;
48 curstart = curstart + synt_hop;
49 end
50
51 k=sum(hanningz(win) .* window)/synt_hop;
52 X=X/k;
53
54 end

where:
• synt_hop is the synthesis hop
• an_hop is the analysis hop
In the next sub-paragraphs, we will go over each section.

DAFX-4

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

4.1 Phase unwrapping

Phase unwrapping is required to recover the precise phase value
for each bin.
The phase values are given modulo 2π . The unwrapping is done
by first calculating for all bins the difference delta_phi
between the actual phase and a target phase which would
correspond to the nominal frequency of the bin, and then by
calculating the phase increment relative to one sample.
10 two_pi=2*pi;
11 omega = two_pi*an_hop*[0:num_bins-1]’/num_bins;
12
13 for idx=2 : num_frames
14 ddx = idx-1;
15 delta_phi(:,ddx) = \

princarg(P(:,idx)-P(:,ddx)-omega);
16 phase_inc(:,ddx)=(omega+delta_phi(:,ddx))/an_hop;
17 end

In this fragment
• omega is the nominal phase increment for the analysis hop size
for each bin
• princarg is a simple function that returns the principal
argument of the nominal initial phase of each frame; the
princarg function is

function Phase=princarg(Phasein)
two_pi=2*pi;
a=Phasein/two_pi;
k=round(a);
Phase=Phasein-k*two_pi;

end
(the princarg function was written by Carlo Drioli)
• delta_phi contains the difference between the phases of two
adjacent frames for each bin and its nominal phase
• phase_inc is the phase increment for each bin

4.2 Synthesis phase calculation

After finding the correct phase increment, that phase increment
may be multiplied the synthesis hop. After that, it may be
accumulated frame by frame.
This is what happens in the following code snippet:
30 PF(:,1)=P(:,1); % the initial phase is the same
31 for idx = 2:num_frames
32 ddx = idx-1;
33 PF(:,idx)=PF(:,ddx)+synt_hop*phase_inc(:,ddx);
34 end;
35 Z=M.*exp(i*PF);

After recalculating the correct phase with the synthesis hop, the
signal is recombined in a rectangular array of complex numbers.
That’s done in a single MATLAB™ line,
Z=M .* exp(i*PF);
Quite a lot goes on in this single line:
• M is still the rectangular array of the moduli of each bin in each
frame coming out of the analysis stage
• exp(i*PF) is the rectangular array of recalculated phases for
each bin in each frame (the eiφ side)
• and .* is the member-by-member multiplication

4.3 Overlap-Add

After rebuilding the complex signal and performing iFFTs on all
frames, it is necessary to overlap-add each frame every synthesis
hop.
42 X = zeros((num_frames*synt_hop)+win, 1);
43 curstart = 1;
44 for idx = 1:num_frames
45 curend = curstart + win - 1;

46 RIfft = fftshift(real(ifft(Z(:,idx))));
47 X([curstart:curend]) = \

X([curstart:curend]) + RIfft .* window;
48 curstart = curstart + synt_hop;
49 end

Here an IFFT is performed on each frame, and each frame is
added to the preceding one every synt_hop samples.
Another trick is performed right before the overlap-adding (line
47): the reconstructed signal is again multiplied by a (hanning)
window, to make sure no phase discontinuities spilled out at the
beginning or at the end of a frame (we call this window
tapering).
After overlap-adding, the current position pointer is upgraded by
synt_hop samples.

4.4 Signal rescaling

The overlap-add produces (as the name itself says) an addition of
portions of the output signal. The size of these portions depends
on the selected hop. Supposing that the hop is R samples big,
and considering that

Yr (eiω k) (4)

is the STFT of a signal calculated every R samples, the
resynthesis equation is

y(n) =
r=+∞

r=−∞
Σ

1
N

N−1

k=0
Σ Yr (eiω k)eiω k n

=
r=+∞

r=−∞
Σ x(n)w(rR − n) = x(n)

∞

r=−∞
Σ w(rR − n) (5)

However, since
r=∞

r=−∞
Σ w(rR − n) = W (ei0

R) (6)

then

x(n) = y(n)
W (ei0)

R

(7)

that is, the amplitude of the original signal can be restored by
dividing the overlap-added signal by the amplitude of the base
frequency of the window rescaled by the synthesis hop.
This is exactly what happens in the following code snippet:
51 k=sum(hanningz(win) .* window)/synt_hop;
52 X=X/k;

The sum(hanningz(win) .* window) that is, the sum of
all samples of the analysis window multiplied by the tapering
window is a faster equivalent of performing the fft of the
argument and picking up the value of the first bin.

5 MORE TRICKS

Up to now, we hav e shown a standard implementation. Other
additional tricks can be applied to a standard implementation to
either simplify it or to obtain better results, among which:
• simplified implementations for integer stretching ratios
• zero-padding the analysis windows
• performing phase vocoding on signals of unlimited length

5.1 Simplified implementations

When all is needed is integer stretching ratios, that is

Hs

Ha
= [2, 3, . . .] (8)

DAFX-5

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

the implementation can be greatly simplified. The code that
follows is a functional time stretcher for integer stretching ratios
coded by Daniel Arfib:

function MXral(w1,w2,n1,n2)
global DAFx_in;
global DAFx_out;

% w1 and w2 windows (analysis and synthesis)
% lfen is the length of the windows
% n1 and n2: steps (in samples) for
% the analysis and synthesis

ral=n2/n1;
lfen=length(w1)
grain=zeros(lfen,1);
pin=0;pout=0;
pend=length(DAFx_in)-lfen;

while pin<pend
grain = DAFx_in(pin+1:pin+lfen).* w1;

%======================================
f = fft(fftshift(grain));
r = abs(f);
theta = angle(f);
ft = (r.* exp(i*ral*theta));
grain = fftshift(real(ifft(ft))).*w2;

% =====================================
DAFx_out(pout+1:pout+lfen) = \

DAFx_out(pout+1:pout+lfen)+grain;
pin=pin+n1;pout=pout+n2;

end;

In this function, the actual core of the processing is performed
between the two %==== lines, and:
• n1 is the analysis hop size
• n2 is the synthesis hop size
• lfen is the size of the analysis/synthesis windows
• ral is the stretching factor
• w1 is the analysis window
• w2 is the synthesis (tapering) window
• the signal is read from the global variable DAFx_in and
written into the global variable DAFx_out

The most important line is:
ft = (r.* exp(i*ral*theta));

where the stretching factor is applied directly to the angle. This
can be done here with a considerable simplification because we
imposed it to be an integer multiplier.

5.2 Zero-padding frames

In general, large analysis windows provide a better frequency
grid, while smaller ones can keep better track of fast spectral
modifications.
A nice trick that reduces this problem is to run zero-padded
analysis frames; here is how it works:

Normal window size

Zero−padded window size

Figure 8. Zero-padding analysis frames

In this way, giv en the same sampling frequency Fc it is possible
to obtain substantial frequency precision increases; for example,

at Fc = 44100, a 1024 samples-sized window has bins that are 43
Hz wide; a 4096 samples-sized window has bins that are 11 Hz
wide: thus, by zero-padding a 1024 samples window up to a 4096
samples window it is possible to increase the frequency precision
by four.

5.3 Signals of unlimited length

In the implementation shown, all processing is done in core, that
is:
• the input signal is loaded entirely into the core memory of the
computer
• during analysis and resynthesis, all necessary memory resources
(window frames, etc.) are allocated at once
This implementation is simpler and faster to test, but it uses a lot
of core memory even for a short sound and it is limited to
whatever core memory is available.
Since it is possible to perform phase-vocoding on a limited
portion of the signal at a time, the DAfx signal framework can be
used:
while fin(1)˜=0
[x,fin]=readwav(Nx,fin);
inbuffer=[inbuffer(Nx+1:Ni);x];
[outbuffer, state]=dafx(inbuffer,state,args...);
y=outbuffer(1:Ny);
fout=writewav(y,fout);

end

(this framework was suggested in[11] and is an extract provided
by Javier Casajus as a unified template for audio effects - the
complete template may be found in the COST-G6—DAfx
website‡). In this context, the dafx function call may be
replaced by a specific effect using a modified version of the
pv_analyze and pv_synthesize. The modification
implies saving of the previous buffer state (in the variable
state) between one buffer and the next.
Here, the signal gets read in chunks (of Nx size), processed, and
written out in chunks (of Ny size); there are no limits on the
number of chunks that can be processed: longer input signals will
imply longer processing time but not increased resource usage.

6 CONCLUSIONS

When a sophisticated frequency-domain sound processing effect
like the phase-vocoder is turned into a real-life implementation, a
significant number of tricks have to take place in order to achieve
ev en the most minimal quality required in musical applications.
In this paper we document the excerpts of a traditional
implementation of a phase-vocoder (if a tradition can be
established in such an endeavor), along with most (if not all) the
tricks required to run it properly in the chosen implementation
setting and language, MATLAB™. The complete implementation
is available in source from the COST-G6—DAfx website‡.
This implementation was written in the framework of a COST-
G6—DAfx action working group held at the Laboratoire de
Mécanique et d’Acoustique of the CNRS in Marseille on May
24-27, 2000. Everybody in that working group contributed to
some extent to the making of it.
Moreover, it required a significant amount of help from a number
of people we expressly wish to thank here: Emmanuel Favreau,
Javier Casajùs, Giovanni De Poli, Carlo Drioli and Riccardo Di
Federico.

‡ (//http://echo.gaps.ssr.upm.es/COSTG6/)

DAFX-6

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December 7-9,2000

7 REFERENCES

[1] Arfib, Daniel, “Analysis, Transformation and Resynthesis of
Musical Sounds with the help of Time-Frequency
Representation” in The Representation of Musical Sounds,
Depoli, Giovanni, Piccialli, Aldo, and Roads, Curtis eds.,
87-118, MIT Press (1991).

[2] Dolson, Mark, “The Phase-Vocoder: a tutorial,” Computer
Music Journal, 10, 4, 14-27, The MIT Press, Cambridge,
MA. (1986).

[3] Laroche, Jean and Dolson, Mark, “About this phasiness
business” in Proceedings of the 1997 International
Computer Music Conference, International Computer Music
Association, San Francisco USA (1997).

[4] Jean Laroche, “Time and pitch scale modification of audio
signals” in Applications of digital signal processing to audio
and acoustics, Kahrs, Mark and Brandenburg, Karlheinz
eds., 279-309, Kluwer Academic Publishers (1998).

[5] J.L.Flanagan and R.M. Golden, “The Phase vocoder,” The
Bell System Technical Journal, 45, 8, 1493-1509 (october
1966).

[6] Sussman, Rob and Laroche, Jean, “Application of the phase
vocoder to pitch-preserving synchronisation of an audio
stream to an external clock” in Proc. 1999 IEEE Workshop
an applications of signal processing to audio and acoustics,
75-77 (1999).

[7] Laroche, Jean and Dolson, Mark, “New phase-vocoder
techniques for pitch shifting, harmonizing and other exotic
effects” in Proc. 1999 IEEE workshop on application of
signal processing to audio and acoustic, 91-94 (1999).

[8] Serra, Marie-Helene, “An Introduction to the Phase
Vocoder” in Musical Signal Processing, Roads, Curtis,
Pope, Stephen, Piccialli, Aldo, and De Poli, Giovanni eds.,
Swets & Zeitlinger, Lisse, Holland (1997). ISBN:
90265-1482 4.

[9] Moore, Richard, Elements of Computer Music, Prentice
Hall, Englewood Cliffs (1990).

[10] Cariolaro, Gianfranco, Teoria unificata dei segnali, UTET,
Torino (1991).

[11] Arfib, Daniel, “Different Ways to Write Digital Audio
Effects Programs” in DAFX98 Proceedings, Barcelona,
188-191, Barcelona, Spain (November 19-21, 1998).

DAFX-7

