Union-Find Algorithms

- dynamic connectivity
- quick find
- quick union
- improvements
- applications

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.

Dynamic connectivity

Given a set of objects

- Union: connect two objects.
more difficult problem: find the path
- Find: is there a path connecting the two objects?

```
union(3, 4)
union(8, 0)
union(2, 3)
union(5, 6)
    find(0, 2)
    find(2, 4)
union(5, 1)
union(7, 3)
union(1, 6)
union(4, 8)
    find(0, 2) yes
    find(2, 4) yes
```


Modeling the objects

Dynamic connectivity applications involve manipulating objects of all types.

- Variable name aliases.
- Pixels in a digital photo.
- Computers in a network.
- Web pages on the Internet.
- Transistors in a computer chip.
- Metallic sites in a composite system.

When programming, convenient to name objects 0 to $\mathrm{N}-1$.

- Use integers as array index.
- Suppress details not relevant to union-find.
can use symbol table to translate from object names to integers (stay tuned)

Modeling the connections

Transitivity.

If p is connected to q and q is connected to r , then p is connected to r .

Connected components. Maximal set of objects that are mutually connected.

connected components

Implementing the operations

Find query. Check if two objects are in the same set.

Union command. Replace sets containing two objects with their union.

union (4, 8)

$$
\left\{\begin{array}{lllllllllll}
1 & 5 & 6
\end{array}\right\}\left\{\begin{array}{lllll}
& 2 & 3 & 7
\end{array}\right\}
$$

Union-find data type (API)

Goal. Design efficient data structure for union-find.

- Number of objects N can be huge.
- Number of operations M can be huge.
- Find queries and union commands may be intermixed.

```
public class UnionFind
    UnionFind(int N)
        create union-find data structure with
    N objects and no connections
    boolean find(int p, int q) are p and q in the same set?
    void unite(int p, int q)
    replace sets containing p and q
        with their union
```

> quick find

Quick-find [eager approach]

Data structure.

- Integer array id[] of size n.
- Interpretation: p and q are connected if they have the same id.

2, 3, 4, and 9 are connected
(0)
(1)
(5)

Quick-find [eager approach]

Data structure.

- Integer array id[] of size n.
- Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

5 and 6 are connected
2, 3, 4, and 9 are connected
$i d[3]=9 ; i d[6]=6$
3 and 6 not connected

Quick-find [eager approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: p and q are connected if they have the same id.

```
clllllllllll
5 and 6 are connected
2,3,4, and 9}\mathrm{ are connected
```

Find. Check if p and q have the same id.

```
id[3] = 9; id[6] = 6
3 and 6 not connected
```

Union. To merge sets containing p and q , change all entries with id [p] to id [q].

union of 3 and 6
$2,3,4,5,6$, and 9 are connected

Quick-find example

3-4	0	1	2	4	4	5	6			9
4-9	0	1	2	9	9	5	6		8	9
8-0	0	1	2	9	9	5	6		0	9
2-3	0	1	9	9	9	5	6		0	9
5-6	0	1	9	9	9	6	6		0	9
5-9	0	1	9	9	9	9	9		0	9
7-3	0	1	9	9	9	9	9		0	9
4-8	0	1	0	0	0	0	0		0	0
6-1	1	1	1	1	1	1	1		1	1

(0) (1) (2) (4) (5) (6) (7) (8) (9)
(0) (1) (2) (3) $_{(4)}^{9}$ (5) (6) (7) (8)
(1) (2) (3) (4) (5) (5) (7) (0)
(1) ${ }_{(2)}^{8}$ (3) (4) (5) (5) (7) (0)
(1) ${ }^{9}$ (2) (3) (4) (3) (7) (8)
(1) (2) (3) (4) (5) (6)
(7) (0)
(1)

(1) (3) (4) (5) (5) (7) 8 (9) (0)-(2) (3) (4) (5) (6) (7)-(9)
problem: many values can change

Quick-find: Java implementation

```
public class QuickFind
{
    private int[] id;
    public QuickFind(int N)
    {
        id = new int[N];
        for (int i = 0; i < N; i++)
                id[i] = i;
    }
    public boolean find(int p, int q)
    {
        return id[p] == id[q];
    }
    public void unite(int p, int q)
    {
            int pid = id[p];
            for (int i = 0; i < id.length; i++)
            if (id[i] == pid) id[i] = id[q];
    }
}
```

set id of each object to itself (N operations)
check if p and q have same id (1 operation)
change all entries with id[p] to id[q] (N operations)

Quick-find is too slow

Quick-find defect.

- Union too expensive (N operations).
- Trees are flat, but too expensive to keep them flat.

algorithm	union	find
quick-find	N	1

Ex. May take N^{2} operations to process N union commands on N objects.

Quadratic algorithms do not scale

Rough standard (for now).

- 10^{9} operations per second.
- 10^{9} words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

- 10^{9} union commands on 10^{9} objects.
- Quick-find takes more than 10^{18} operations.
- 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be $10 x$ as fast.
- But, has $10 x$ as much memory so problem may be $10 x$ bigger.
- With quadratic algorithm, takes $10 \times$ as long!

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: id[i] is parent of i. keep going until it doesn't change
- Root of i is id[id[id[...id[i]...]]].

3 's root is 9; 5's root is 6

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: id [i] is parent of i. keep going until it doesn't change
- Root of i is id[id[id[...id[i]...]].

Find. Check if p and q have the same root.

3's root is 9; 5's root is 6
3 and 5 are not connected

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: id[i] is parent of i. keep going until it doesn't change
- Root of i is id[id[id[...id[i]...]]].

$$
\begin{array}{|ccccccccccc|}
\hline i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
i d[i] & 0 & 1 & 9 & 4 & 9 & 6 & 6 & 7 & 8 & 9 \\
\hline
\end{array}
$$

Find. Check if p and q have the same root.

Union. To merge subsets containing p and q , set the id of q 's root to the id of p 's root.

3 's root is 9; 5's root is 6 3 and 5 are not connected
(8)

78
(0) 1

Quick-union example

$$
\begin{array}{lllllllllll}
3-4 & 0 & 1 & 2 & 4 & 4 & 5 & 6 & 7 & 8 & 9 \\
4-9 & 0 & 1 & 2 & 4 & 9 & 5 & 6 & 7 & 8 & 9 \\
\hline 8-0 & 0 & 1 & 2 & 4 & 9 & 5 & 6 & 7 & 0 & 9 \\
& & & & & & & & & & \\
\hline 2-3 & 0 & 1 & 9 & 4 & 9 & 5 & 6 & 7 & 0 & 9 \\
5-6 & 0 & 1 & 9 & 4 & 9 & 6 & 6 & 7 & 0 & 9 \\
& & & & & & & & & & \\
5-9 & 0 & 1 & 9 & 4 & 9 & 6 & 9 & 7 & 0 & 9 \\
& & & & & & & & & & \\
7-3 & 0 & 1 & 9 & 4 & 9 & 6 & 9 & 9 & 0 & 9 \\
& & & & & & & & & & \\
4-8 & 0 & 1 & 9 & 4 & 9 & 6 & 9 & 9 & 0 & 0 \\
\hline 6-1 & 1 & 1 & 9 & 4 & 9 & 6 & 9 & 9 & 0 & 0
\end{array}
$$

Quick-union: Java implementation

```
public class QuickUnion
{
    private int[] id;
    public QuickUnion(int N)
    {
        id = new int[N]; set id of each object to itself
        for (int i = 0; i < N; i++) id[i] = i; 
    }
    private int root(int i)
    {
        while (i != id[i]) i = id[i];
        return i;
    }
    public boolean find(int p, int q)
    {
        return root(p) == root(q);
    }
    public void unite(int p, int q)
    {
        int i = root(p), j = root(q);
        id[i] = j;
    }
}
```

Quick-union is also too slow

Quick-find defect.

- Union too expensive (N operations).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.

- Trees can get tall.
- Find too expensive (could be N operations).

Improvement 1: weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each subset.
- Balance by linking small tree below large one.

Ex. Union of 3 and 5.

- Quick union: link 9 to 6.
- Weighted quick union: link 6 to 9 .

Weighted quick-union example

$$
\begin{array}{lllllllllll}
3-4 & 0 & 1 & 2 & 3 & 3 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

$$
4-9 \quad 0 \quad 1 \quad 2 \quad 3 \quad 3 \quad 5 \quad 6 \quad 7 \quad 8 \quad 3
$$

$$
\begin{array}{lllllllllll}
8-0 & 8 & 1 & 2 & 3 & 3 & 5 & 6 & 7 & 8 & 3
\end{array}
$$

$$
2-3 \quad 8 \quad 1 \quad 3 \quad 3 \quad 3 \quad 5 \quad 6 \quad 7 \quad 8 \quad 3
$$

$$
\begin{array}{lllllllllll}
5-6 & 8 & 1 & 3 & 3 & 3 & 5 & 5 & 7 & 8 & 3
\end{array}
$$

$$
\begin{array}{lllllllllll}
5-9 & 8 & 1 & 3 & 3 & 3 & 3 & 5 & 7 & 8 & 3
\end{array}
$$

$$
\begin{array}{lllllllllll}
7-3 & 8 & 1 & 3 & 3 & 3 & 3 & 5 & 3 & 8 & 3
\end{array}
$$

$$
\begin{array}{lllllllllll}
4-8 & 8 & 1 & 3 & 3 & 3 & 3 & 5 & 3 & 3 & 3
\end{array}
$$

$$
\begin{array}{lllllllllll}
6-1 & 8 & 3 & 3 & 3 & 3 & 3 & 5 & 3 & 3 & 3
\end{array}
$$

(0) (1) (2) (3) (5) (6) (7) (8) (9)
(0) (1) (2) (4) 3 (9) (5) (6) (7) (8)
(8) (1) (2) (4) (9) (5) (6) (7)
(8) (1) (2) (4) (5) (5) (5) (7) (8) $^{(1)}$ (2) ${ }^{(4)}$ (9) (5) ${ }^{(7)}$

 (8) (2) (4) (5) (7) (9)

no problem:
trees stay flat

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i] to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

```
return root(p) == root(q);
```

Union. Modify quick-union to:

- Merge smaller tree into larger tree.
- Update the sz[] array.

```
int i = root(p);
int j = root(q);
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else { id[j] = i; sz[i] += sz[j]; }
```


Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.
- Fact: depth is at most $\lg \mathrm{N}$. [needs proof]
Q. How does depth of x increase by 1 ?
A. Tree T_{1} containing x is merged into another tree T_{2}.
- The size of the tree containing x at least doubles since $\left|T_{2}\right| \geq\left|T_{1}\right|$.
- Size of tree containing x can double at most $\lg N$ times.

Weighted quick-union analysis

Analysis.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.
- Fact: depth is at most $\lg N$. [needs proof]

algorithm	union	find
quick-find	N	1
quick-union	$N *$	N
weighted QU	$\lg N *$	$\lg N$

* includes cost of finding root
Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p, set the id of each examined node to root (p).

Path compression: Java implementation

Standard implementation: add second loop to root() to set the id of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other node in path point to its grandparent.

```
public int root(int i)
{
    while (i != id[i])
    {
        id[i] = id[id[i]]; « only one extra line of code!
        i = id[i];
    }
    return i;
}
```

In practice. No reason not to! Keeps tree almost completely flat.

Weighted quick-union with path compression example

(1) (1) (2) (3) (5) (5) (7) (8) (9)
(1) (1) (2) (4) 3 (9) ${ }^{\text {(5) (6) (7) (8) }}$
(8) (1) (2) (4) $\left.^{3}\right)^{(9)}$ (5) (6) (7)
(8) $^{(1)}$ (2) $\left.{ }^{3}\right)_{(9)}^{\text {(5) (6) (7) }}$
(8) $^{(1)}$ (2) ${ }^{3}$ (4) (5) (5) ${ }^{(7)}$

(1) (1) (2) (4) (5) (6-7(9)
no problem:
trees stay VERY flat

WQUPC performance

Theorem. [Tarjan 1975] Starting from an empty data structure, any sequence of M union and find operations on N objects takes $O\left(N+M \lg { }^{\star} N\right)$ time.

- Proof is very difficult.
- But the algorithm is still simple!

```
\uparrow
actually O(N+M \alpha(M,N))
    see COS 423
```


Linear algorithm?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

N	$\lg ^{\star} N$
1	0
2	1
4	2
16	3
65536	4
2^{65536}	5
Ig* function	

Amazing fact. No linear-time linking strategy exists.

Summary

Bottom line. WQUPC makes it possible to solve problems that could not otherwise be addressed.

algorithm	worst-case time
quick-find	$M N$
quick-union	$M N$
weighted QU	$N+M \log N$
QU + path compression	$N+M \log N$
weighted QU + path compression	$N+M \lg N$

M union-find operations on a set of N objects

Ex. [10 ${ }^{9}$ unions and finds with 10^{9} objects]

- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.

Union-find applications

- Percolation.
- Games (Go, Hex).
\checkmark Network connectivity.
- Least common ancestor.
- Equivalence of finite state automata.
- Hoshen-Kopelman algorithm in physics.
- Hinley-Milner polymorphic type inference.
- Kruskal's minimum spanning tree algorithm.
- Compiling equivalence statements in Fortran.
- Morphological attribute openings and closings.
- Matlab's bwlabel () function in image processing.

Percolation

A model for many physical systems:

- N -by-N grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates if top and bottom are connected by open sites.

Percolation

A model for many physical systems:

- N -by- N grid of sites.
- Each site is open with probability p (or blocked with probability 1-p).
- System percolates if top and bottom are connected by open sites.

model	system	vacant site	occupied site	percolates
electricity	material	conductor	insulated	conducts
fluid flow	material	empty	blocked	porous
social interaction	population	person	empty	communicates

Likelihood of percolation

Depends on site vacancy probability p.

plow
does not percolate

p medium
percolates?

phigh
percolates

Percolation phase transition

Theory guarantees a sharp threshold p^{*} (when N is large).

- $p>p^{\star}$: almost certainly percolates.
- $p<p^{\star}$: almost certainly does not percolate.
Q. What is the value of p^{*} ?

Monte Carlo simulation

- Initialize N -by- N whole grid to be blocked.
- Make random sites open until top connected to bottom.
- Vacancy percentage estimates p*.

UF solution to find percolation threshold

How to check whether system percolates?

- Create object for each site.
- Sites are in same set if connected by open sites.
- Percolates if any site in top row is in same set as any site in bottom row.
brute force alg would need to check N^{2} pairs

0	0	2	3	4	5	6	7
8	9	10	10	12	13	6	15
16	17	18	19	20	21	22	23
24	25	25	25	28	29	29	31
32	33	25	35	36	37	38	39
40	41	25	43	36	45	46	47
48	49	25	51	36	53	47	47
56	57	58	59	60	61	62	47

$N=8$

UF solution to find percolation threshold
Q. How to declare a new site open?

UF solution to find percolation threshold
Q. How to declare a new site open?
A. Take union of new site and all adjacent open sites.

UF solution: a critical optimization

Q. How to avoid checking all pairs of top and bottom sites?
A. Create a virtual top and bottom objects;
system percolates when virtual top and bottom objects are in same set.

full open site
(connected to top)
empty open site
(not connected to top)
blocked site
virtual bottom row \rightarrow

Percolation threshold

Q. What is percolation threshold p^{*} ?
A. About 0.592746 for large square lattices.
percolation constant known
only via simulation

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.

