Union-Find Algorithms

- dynamic connectivity
- quick find
- quick union
- improvements
- applications
Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.
dynamic connectivity
 • quick find
 • quick union
 • improvements
 • applications
Dynamic connectivity

Given a set of objects

• **Union**: connect two objects.
• **Find**: is there a path connecting the two objects?

```
union(3, 4)
union(8, 0)
union(2, 3)
union(5, 6)
  find(0, 2)  no
  find(2, 4)  yes
union(5, 1)
union(7, 3)
union(1, 6)
union(4, 8)
  find(0, 2)  yes
  find(2, 4)  yes

```
Network connectivity: larger example
Modeling the objects

Dynamic connectivity applications involve manipulating objects of all types.

- Variable name aliases.
- Pixels in a digital photo.
- Computers in a network.
- Web pages on the Internet.
- Transistors in a computer chip.
- Metallic sites in a composite system.

When programming, convenient to name objects 0 to N-1.

- Use integers as array index.
- Suppress details not relevant to union-find.

Can use symbol table to translate from object names to integers (stay tuned)
Modeling the connections

Transitivity.
If \(p \) is connected to \(q \) and \(q \) is connected to \(r \), then \(p \) is connected to \(r \).

Connected components. Maximal set of objects that are mutually connected.

\[
\{ 1 \ 5 \ 6 \} \ { 2 \ 3 \ 4 \ 7 \} \ { 0 \ 8 \}
\]

connected components
Implementing the operations

Find query. Check if two objects are in the same set.

Union command. Replace sets containing two objects with their union.

\[\{ 1 \ 5 \ 6 \} \{ 2 \ 3 \ 4 \ 7 \} \{ 0 \ 8 \} \]

\[\{ 1 \ 5 \ 6 \} \{ 0 \ 2 \ 3 \ 4 \ 7 \ 8 \} \]

connected components
Goal. Design efficient data structure for union-find.

- Number of objects N can be huge.
- Number of operations M can be huge.
- Find queries and union commands may be intermixed.

Union-find data type (API)

```java
public class UnionFind {
    public UnionFind(int N) {
        // create union-find data structure with $N$ objects and no connections
    }
    public boolean find(int p, int q) {
        // are $p$ and $q$ in the same set?
    }
    public void unite(int p, int q) {
        // replace sets containing $p$ and $q$ with their union
    }
}
```
• dynamic connectivity
• quick find
• quick union
• improvements
• applications
Quick-find [eager approach]

Data structure.
- Integer array \(\text{id[]} \) of size \(N \).
- Interpretation: \(p \) and \(q \) are connected if they have the same id.

\[
\begin{array}{ccccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text{id}[i] & 0 & 1 & 9 & 9 & 9 & 6 & 6 & 7 & 8 & 9 \\
\end{array}
\]

5 and 6 are connected
2, 3, 4, and 9 are connected
Quick-find [eager approach]

Data structure.

- Integer array id[] of size N.
- Interpretation: \(p \) and \(q \) are connected if they have the same id.

\[
\begin{array}{cccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
 id[i] & 0 & 1 & 9 & 9 & 6 & 6 & 7 & 8 & 9 & \\
\end{array}
\]

Find. **Check if \(p \) and \(q \) have the same id.**

- 3 and 6 not connected

- 5 and 6 are connected
- 2, 3, 4, and 9 are connected
Quick-find [eager approach]

Data structure.
• Integer array \(\text{id}[\] \) of size \(N \).
• Interpretation: \(p \) and \(q \) are connected if they have the same id.

\[
\begin{array}{ccccccccccc}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
id[i] & 0 & 1 & 9 & 9 & 9 & 6 & 6 & 7 & 8 & 9 \\
\end{array}
\]

Find. Check if \(p \) and \(q \) have the same id.

\[
\begin{array}{ccccccccccc}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
id[i] & 0 & 1 & 6 & 6 & 6 & 6 & 6 & 7 & 8 & 6 \\
\end{array}
\]

Union. To merge sets containing \(p \) and \(q \), change all entries with \(\text{id}[p] \) to \(\text{id}[q] \).

\[
\begin{array}{ccccccccccc}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
id[i] & 0 & 1 & 6 & 6 & 6 & 6 & 6 & 7 & 8 & 6 \\
\end{array}
\]

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

problem: many values can change
Quick-find example

3-4 0 1 2 4 4 5 6 7 8 9
4-9 0 1 2 9 9 5 6 7 8 9
8-0 0 1 2 9 9 5 6 7 0 9
2-3 0 1 9 9 9 5 6 7 0 9
5-6 0 1 9 9 9 6 6 7 0 9
5-9 0 1 9 9 9 9 9 7 0 9
7-3 0 1 9 9 9 9 9 9 0 9
4-8 0 1 0 0 0 0 0 0 0 0
6-1 1 1 1 1 1 1 1 1 1 1

problem: many values can change
Quick-find: Java implementation

```java
public class QuickFind {
    private int[] id;

    public QuickFind(int N) {
        id = new int[N];
        for (int i = 0; i < N; i++)
            id[i] = i;
    }

    public boolean find(int p, int q) {
        return id[p] == id[q];
    }

    public void unite(int p, int q) {
        int pid = id[p];
        for (int i = 0; i < id.length; i++)
            if (id[i] == pid) id[i] = id[q];
    }
}
```

- Set id of each object to itself (N operations)
- Check if p and q have same id (1 operation)
- Change all entries with id[p] to id[q] (N operations)
Quick-find is too slow

Quick-find defect.
- Union too expensive (N operations).
- Trees are flat, but too expensive to keep them flat.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>1</td>
</tr>
</tbody>
</table>

Ex. May take N^2 operations to process N union commands on N objects.
Quadratic algorithms do not scale

Rough standard (for now).
• 10^9 operations per second.
• 10^9 words of main memory.
• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.
• 10^9 union commands on 10^9 objects.
• Quick-find takes more than 10^{18} operations.
• 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.
• New computer may be 10x as fast.
• But, has 10x as much memory so problem may be 10x bigger.
• With quadratic algorithm, takes 10x as long!
› dynamic connectivity
› quick find
› quick union
› improvements
› applications
Quick-union [lazy approach]

Data structure.
• Integer array $id[]$ of size N.
• Interpretation: $id[i]$ is parent of i.
• Root of i is $id[id[id[...id[i]...]]]$.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>id[i]</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

3’s root is 9; 5’s root is 6

Keep going until it doesn’t change
Quick-union [lazy approach]

Data structure.
• Integer array id[] of size N.
• Interpretation: id[i] is parent of i.
• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

3's root is 9; 5's root is 6
3 and 5 are not connected
Quick-union [lazy approach]

Data structure.
- Integer array \(id[] \) of size \(N \).
- Interpretation: \(id[i] \) is parent of \(i \).
- **Root** of \(i \) is \(id[id[id[\ldots id[i]\ldots]]] \).

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(id[i])</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Find. Check if \(p \) and \(q \) have the same root.

Union. To merge subsets containing \(p \) and \(q \), set the id of \(q \)'s root to the id of \(p \)'s root.

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(id[i])</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

3's root is 9; 5's root is 6
3 and 5 are not connected

only one value changes
keep going until it doesn't change
Quick-union example

3–4 0 1 2 4 4 5 6 7 8 9
4–9 0 1 2 4 9 5 6 7 8 9
8–0 0 1 2 4 9 5 6 7 0 9
2–3 0 1 9 4 9 5 6 7 0 9
5–6 0 1 9 4 9 6 6 7 0 9
5–9 0 1 9 4 9 6 9 7 0 9
7–3 0 1 9 4 9 6 9 9 0 9
4–8 0 1 9 4 9 6 9 9 0 0
6–1 1 1 9 4 9 6 9 9 0 0

problem: trees can get tall
public class QuickUnion
{
 private int[] id;

 public QuickUnion(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i)
 {
 while (i != id[i]) i = id[i];
 return i;
 }

 public boolean find(int p, int q)
 {
 return root(p) == root(q);
 }

 public void unite(int p, int q)
 {
 int i = root(p), j = root(q);
 id[i] = j;
 }
}
Quick-union is also too slow

Quick-find defect.
• Union too expensive (N operations).
• Trees are flat, but too expensive to keep them flat.

Quick-union defect.
• Trees can get tall.
• Find too expensive (could be N operations).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Union</th>
<th>Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>N *</td>
<td>N</td>
</tr>
</tbody>
</table>

* includes cost of finding root
- dynamic connectivity
- quick find
- quick union
- improvements
- applications
Improvement 1: weighting

Weighted quick-union.
- Modify quick-union to avoid tall trees.
- Keep track of size of each subset.
- Balance by linking small tree below large one.

Ex. Union of 3 and 5.
- Quick union: link 9 to 6.
- Weighted quick union: link 6 to 9.
Weighted quick-union example

3–4 0 1 2 3 3 5 6 7 8 9
4–9 0 1 2 3 3 5 6 7 8 3
8–0 8 1 2 3 3 5 6 7 8 3
2–3 8 1 3 3 3 5 6 7 8 3
5–6 8 1 3 3 3 5 7 8 3
5–9 8 1 3 3 3 3 7 8 3
7–3 8 1 3 3 3 3 5 3 8 3
4–8 8 1 3 3 3 3 5 3 3 3
6–1 8 3 3 3 3 5 3 3 3

no problem: trees stay flat
Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array $sz[i]$ to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

```
return root(p) == root(q);
```

Union. Modify quick-union to:

• Merge smaller tree into larger tree.
• Update the $sz[]$ array.

```
int i = root(p);
int j = root(q);
if  (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else                { id[j] = i; sz[i] += sz[j]; }
```
Weighted quick-union analysis

Analysis.
• Find: takes time proportional to depth of p and q.
• Union: takes constant time, given roots.
• Fact: depth is at most $\lg N$. [needs proof]

Q. How does depth of x increase by 1?
A. Tree T_1 containing x is merged into another tree T_2.
 • The size of the tree containing x at least doubles since $|T_2| \geq |T_1|$.
 • Size of tree containing x can double at most $\lg N$ times.
Weighted quick-union analysis

Analysis.

- **Find**: takes time proportional to depth of p and q.
- **Union**: takes constant time, given roots.
- **Fact**: depth is at most \(\lg N \). \([\text{needs proof}]\)

<table>
<thead>
<tr>
<th>algorithm</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>(N)</td>
<td>(1)</td>
</tr>
<tr>
<td>quick-union</td>
<td>(N \ast)</td>
<td>(N)</td>
</tr>
<tr>
<td>weighted QU</td>
<td>(\lg N \ast)</td>
<td>(\lg N)</td>
</tr>
</tbody>
</table>

* includes cost of finding root

Q. Stop at guaranteed acceptable performance?

A. No, easy to improve further.
Improvement 2: path compression

Quick union with path compression. Just after computing the root of p, set the id of each examined node to $\text{root}(p)$.
Path compression: Java implementation

Standard implementation: add second loop to `root()` to set the id of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other node in path point to its grandparent.

```java
public int root(int i)
{
    while (i != id[i])
    {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
```

In practice. No reason not to! Keeps tree almost completely flat.
Weighted quick-union with path compression example

3–4 0 1 2 3 3 5 6 7 8 9
4–9 0 1 2 3 3 5 6 7 8 3
8–0 8 1 2 3 3 5 6 7 8 3
2–3 8 1 3 3 3 5 6 7 8 3
5–6 8 1 3 3 3 5 7 8 3
5–9 8 1 3 3 3 5 7 8 3
7–3 8 1 3 3 3 3 3 3 3
4–8 8 1 3 3 3 3 3 3
6–1 8 3 3 3 3 3 3 3

no problem: trees stay VERY flat
Theorem. [Tarjan 1975] Starting from an empty data structure, any sequence of M union and find operations on N objects takes $O(N + M \lg^* N)$ time.

- Proof is very difficult.
- But the algorithm is still simple!

Linear algorithm?
- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

Amazing fact. No linear-time linking strategy exists.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>65536</td>
<td>4</td>
</tr>
<tr>
<td>2^{65536}</td>
<td>5</td>
</tr>
</tbody>
</table>

because $\lg^* N$ is a constant in this universe

Actually $O(N + M \alpha(M, N))$

see COS 423
Summary

Bottom line. WQUPC makes it possible to solve problems that could not otherwise be addressed.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case time</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>$M N$</td>
</tr>
<tr>
<td>quick-union</td>
<td>$M N$</td>
</tr>
<tr>
<td>weighted QU</td>
<td>$N + M \log N$</td>
</tr>
<tr>
<td>QU + path compression</td>
<td>$N + M \log N$</td>
</tr>
<tr>
<td>weighted QU + path compression</td>
<td>$N + M \lg^* N$</td>
</tr>
</tbody>
</table>

M union-find operations on a set of N objects

Ex. [10⁹ unions and finds with 10⁹ objects]
- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.
dynamic connectivity
quick find
quick union
improvements
applications
Union-find applications

- Percolation.
- Games (Go, Hex).
- Network connectivity.
- Least common ancestor.
- Equivalence of finite state automata.
- Hoshen-Kopelman algorithm in physics.
- Hinley-Milner polymorphic type inference.
- Kruskal’s minimum spanning tree algorithm.
- Compiling equivalence statements in Fortran.
- Morphological attribute openings and closings.
- Matlab's `bwlabel()` function in image processing.
Percolation

A model for many physical systems:
• N-by-N grid of sites.
• Each site is open with probability p (or blocked with probability $1-p$).
• System **percolates** if top and bottom are connected by open sites.
Percolation

A model for many physical systems:
• N-by-N grid of sites.
• Each site is open with probability p (or blocked with probability 1-p).
• System percolates if top and bottom are connected by open sites.

<table>
<thead>
<tr>
<th>model</th>
<th>system</th>
<th>vacant site</th>
<th>occupied site</th>
<th>percolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>electricity</td>
<td>material</td>
<td>conductor</td>
<td>insulated</td>
<td>conducts</td>
</tr>
<tr>
<td>fluid flow</td>
<td>material</td>
<td>empty</td>
<td>blocked</td>
<td>porous</td>
</tr>
<tr>
<td>social interaction</td>
<td>population</td>
<td>person</td>
<td>empty</td>
<td>communicates</td>
</tr>
</tbody>
</table>
Likelihood of percolation

Depends on site vacancy probability p.

p_{low} does not percolate
p_{medium} percolates?
p_{high} percolates

$N = 20$
Theory guarantees a sharp threshold p^* (when N is large).

- $p > p^*$: almost certainly percolates.
- $p < p^*$: almost certainly does not percolate.

Q. What is the value of p^*?
Monte Carlo simulation

- Initialize N-by-N whole grid to be blocked.
- Make random sites open until top connected to bottom.
- Vacancy percentage estimates p*.
How to check whether system percolates?

- Create object for each site.
- Sites are in same set if connected by open sites.
- Percolates if any site in top row is in same set as any site in bottom row.

brute force alg would need to check N^2 pairs

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td>25</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td>25</td>
<td>43</td>
<td>36</td>
<td>45</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>48</td>
<td>49</td>
<td>25</td>
<td>51</td>
<td>36</td>
<td>53</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>47</td>
</tr>
</tbody>
</table>

$N = 8$
Q. How to declare a new site open?

UF solution to find percolation threshold

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td>25</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td>25</td>
<td>43</td>
<td>36</td>
<td>45</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>48</td>
<td>49</td>
<td>25</td>
<td>51</td>
<td>36</td>
<td>53</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>47</td>
</tr>
</tbody>
</table>

open this site

full open site (connected to top)
empty open site (not connected to top)
blocked site

N = 8
Q. How to declare a new site open?
A. Take union of new site and all adjacent open sites.

UF solution to find percolation threshold

N = 8
Q. How to avoid checking all pairs of top and bottom sites?

A. Create a virtual top and bottom objects; system percolates when virtual top and bottom objects are in same set.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td>25</td>
<td>35</td>
<td>25</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td>25</td>
<td>43</td>
<td>25</td>
<td>45</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>48</td>
<td>49</td>
<td>25</td>
<td>51</td>
<td>25</td>
<td>53</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>47</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>47</td>
</tr>
</tbody>
</table>

UF solution: a critical optimization

- **virtual top row**
- **virtual bottom row**

N = 8
Percolation threshold

Q. What is percolation threshold p^*?

A. About 0.592746 for large square lattices.

Diagram:

- **Percolation probability**
- **Site vacancy probability p**

Note: Percolation constant known only via simulation.
Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.