
1

1

Integral Data Types in C

Professor Jennifer Rexford

http://www.cs.princeton.edu/~jrex

2

Goals for this Lecture
• Binary number system

• Why binary?
• Converting between decimal and binary
• … and octal and hexadecimal number systems

• Finite representations of binary integers
• Unsigned and signed integers
• Integer addition and subtraction

• Bitwise operators
• AND, OR, NOT, and XOR
• Shift-left and shift-right

• The C integral data types
• char, short, int, long
• signed and unsigned variants

2

3

Why Bits (Binary Digits)?
• Computers are built using digital circuits

• Inputs and outputs can have only two values
• True (high voltage) or false (low voltage)
• Represented as 1 and 0

• Can represent many kinds of information
• Boolean (true or false)
• Numbers (23, 79, …)
• Characters (‘a’, ‘z’, …)
• Pixels, sounds
• Internet addresses

• Can manipulate in many ways
• Read and write
• Logical operations
• Arithmetic

4

Base 10 and Base 2
• Decimal (base 10)

• Each digit represents a power of 10
• 4173 = 4 x 103 + 1 x 102 + 7 x 101 + 3 x 100

• Binary (base 2)
• Each bit represents a power of 2
• 10110 = 1 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20 = 22

Decimal to binary conversion:
Divide repeatedly by 2 and keep remainders
12/2 = 6 R = 0
6/2 = 3 R = 0
3/2 = 1 R = 1
1/2 = 0 R = 1
Result = 1100

3

5

Writing Bits is Tedious for People
• Octal (base 8)

• Digits 0, 1, …, 7

• Hexadecimal (base 16)
• Digits 0, 1, …, 9, A, B, C, D, E, F

1111 = F0111 = 7
1110 = E0110 = 6
1101 = D0101 = 5
1100 = C0100 = 4
1011 = B0011 = 3
1010 = A0010 = 2
1001 = 90001 = 1
1000 = 80000 = 0

Thus the 16-bit binary number

1011 0010 1010 1001

converted to hex is

B2A9

6

Representing Colors: RGB
• Three primary colors

• Red
• Green
• Blue

• Strength
• 8-bit number for each color (e.g., two hex digits)
• So, 24 bits to specify a color

• In HTML, on the course Web page
• Red: <i>Symbol Table Assignment Due</i>
• Blue: <i>Spring Break</i>

• Same thing in digital cameras
• Each pixel is a mixture of red, green, and blue

4

7

Finite Representation of Integers
• Fixed number of bits in memory

• Usually 8, 16, or 32 bits
• (1, 2, or 4 bytes)

• Unsigned integer
• No sign bit
• Always 0 or a positive number
• All arithmetic is modulo 2n

• Examples of unsigned integers
• 00000001 1
• 00001111 15
• 00010000 16
• 00100001 33
• 11111111 255

8

Adding Two Integers
• From right to left, we add each pair of digits

• We write the sum, and add the carry to the next column

1 9 8

+ 2 6 4

Sum

Carry

0 1 1

+ 0 0 1

Sum

Carry
2

1

6

1

4

0

0

1

0

1

1

0

Base 10 Base 2

5

9

Binary Sums and Carries
a b Sum a b Carry
0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 1

XOR
(“exclusive OR”)

AND

0100 0101

+ 0110 0111

1010 1100

69
103

172

10

Modulo Arithmetic
• Consider only numbers in a range

• E.g., five-digit car odometer: 0, 1, …, 99999
• E.g., eight-bit numbers 0, 1, …, 255

• Roll-over when you run out of space
• E.g., car odometer goes from 99999 to 0, 1, …
• E.g., eight-bit number goes from 255 to 0, 1, …

• Adding 2n doesn’t change the answer
• For eight-bit number, n=8 and 2n=256
• E.g., (37 + 256) mod 256 is simply 37

• This can help us do subtraction…
• Suppose you want to compute a – b
• Note that this equals a + (256 -1 - b) + 1

6

11

One’s and Two’s Complement
• One’s complement: flip every bit

• E.g., b is 01000101 (i.e., 69 in decimal)
• One’s complement is 10111010
• That’s simply 255-69

• Subtracting from 11111111 is easy (no carry needed!)

• Two’s complement
• Add 1 to the one’s complement
• E.g., (255 – 69) + 1 1011 1011

- 0100 0101
1111 1111

1011 1010

b
one’s complement

12

Putting it All Together
• Computing “a – b”

• Same as “a + 256 – b”
• Same as “a + (255 – b) + 1”
• Same as “a + onesComplement(b) + 1”
• Same as “a + twosComplement(b)”

• Example: 172 – 69
• The original number 69: 0100 0101
• One’s complement of 69: 1011 1010
• Two’s complement of 69: 1011 1011
• Add to the number 172: 1010 1100
• The sum comes to: 0110 0111
• Equals: 103 in decimal

1010 1100

+ 1011 1011

1 0110 0111

7

13

Signed Integers
• Sign-magnitude representation

• Use one bit to store the sign
• Zero for positive number
• One for negative number

• Examples
• E.g., 0010 1100 44
• E.g., 1010 1100 -44

• Hard to do arithmetic this way, so it is rarely used

• Complement representation
• One’s complement

• Flip every bit
• E.g., 1101 0011 -44

• Two’s complement
• Flip every bit, then add 1
• E.g., 1101 0100 -44

14

Overflow: Running Out of Room
• Adding two large integers together

• Sum might be too large to store in the number of bits available
• What happens?

• Unsigned integers
• All arithmetic is “modulo” arithmetic
• Sum would just wrap around

• Signed integers
• Can get nonsense values
• Example with 16-bit integers

• Sum: 10000+20000+30000
• Result: -5536

8

15

Bitwise Operators: AND and OR
• Bitwise AND (&)

• Mod on the cheap!
• E.g., 53 % 16
• … is same as 53 & 15;

• Bitwise OR (|)

&
0

1

0 1
0 0

0 1

|

0

1

0 1
0 1

1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 1 1

53

& 15

0 0 0 0 0 1 0 15

16

Bitwise Operators: Not and XOR
• One’s complement (~)

• Turns 0 to 1, and 1 to 0
• E.g., set last three bits to 0

• x = x & ~7;

• XOR (^)
• 0 if both bits are the same
• 1 if the two bits are different

^

0

1

0 1
0 1

1 0

9

17

Bitwise Operators: Shift Left/Right
• Shift left (<<): Multiply by powers of 2

• Shift some # of bits to the left, filling the blanks with 0

• Shift right (>>): Divide by powers of 2
• Shift some # of bits to the right

• For unsigned integer, fill in blanks with 0
• What about signed negative integers? Varies across machines…

• Can vary from one machine to another!

0 0 1 1 0 1 0 153

1 1 0 1 0 0 0 053<<2

0 0 1 1 0 1 0 153

0 0 0 0 1 1 0 153>>2

18

Example: Counting the 1’s
• How many 1 bits in a number?

• E.g., how many 1 bits in the binary representation of 53?

• Four 1 bits

• How to count them?
• Look at one bit at a time
• Check if that bit is a 1
• Increment counter

• How to look at one bit at a time?
• Look at the last bit: n & 1
• Check if it is a 1: (n & 1) == 1, or simply (n & 1)

0 0 1 1 0 1 0 1

10

19

Counting the Number of ‘1’ Bits
#include <stdio.h>
#include <stdlib.h>

int main(void) {
unsigned n, count;

printf(“Number: ");
if (scanf("%u", &n) != 1) {

fprintf(stderr, "Error: Expect number.\n");
exit(EXIT_FAILURE);

}

for (count=0; n; n >>= 1)
count += (n & 1);

printf(“Number of 1 bits: %u\n”, count);
return 0;

}

20

Data Types
• Programming languages combine:

• Bits into bytes
• Bytes into larger entities

• Combinations of bytes have types; why?
• Facilitates abstraction
• Enables compiler to do type checking

• C has 11 primitive data types
• 8 integral data types (described in this lecture)

• Four different sizes (char, short, int, and long)
• Signed vs. unsigned

• 3 floating-point data types (described in next lecture)

11

21

C Integral Data Types

• Why char vs. short vs. int vs. long?
• Small sizes conserve memory
• Large sizes provide more range

• Why signed vs. unsigned?
• Signed types allow negatives
• Unsigned types allow larger positive numbers
• (Dubious value: Java omits unsigned types)

• When to use unsigned?
• When you really need that extra bit
• When you’ll do lots of bit shifting
• When you’ll never do (a < 0) test

22

• Integral types:

* On hats; C90 standard does not specify size

C Integral Data Types (continued)

A non-negative integer4*unsigned long
An integer4*(signed) long
A non-negative integer4*unsigned int
An integer4*(signed) int
A small non-negative integer2*unsigned short
A small integer2*(signed) short
The numeric code of a character1unsigned char
The numeric code of a character1signed char
Typically Used to StoreBytesType

12

23

The int Data Type
• Description: A positive or negative integer

• Same as signed int

• Size: System dependent
• 16 <= bits in short <= bits in int <= bits in long
• Usually 16 bits (alias 2 bytes) or 32 bits (alias 4 bytes)
• The “natural word size” of the computer

24

The int Data Type (cont.)
• Example constants (assuming 4 bytes)

hexadecimal form00000000 00000000 00000000 01111011 0x7B

octal form00000000 00000000 00000000 01111011 0173

smallest10000000 00000000 00000000 00000000-2147483648

largest01111111 11111111 11111111 111111112147483647

negative form11111111 11111111 11111111 10000101 -123

NoteBinary RepresentationConstant
decimal form 00000000 00000000 00000000 01111011 123

Leading zero means octal

Leading zero-x means hexadecimal

High-order bit indicates sign
Two’s complement

13

25

The unsigned int Data Type
• Description: A positive integer

• Size: System dependent
• Same as int

• Example constants (assuming 4 bytes)

hexadecimal form00000000 00000000 00000000 01111011 0x7BU

octal form00000000 00000000 00000000 01111011 0173U

smallest00000000 00000000 00000000 000000000U

largest11111111 11111111 11111111 111111114294967295U

NoteBinary RepresentationConstant
decimal form 00000000 00000000 00000000 01111011 123U

Note “U” suffix
Same range as int, but
shifted on number line

26

The long Data Type
• Description: A positive or negative integer

• Same as signed long

• Size: System dependent
• 16 <= bits in short <= bits in int <= bits in long
• Usually 32 bits, alias 4 bytes

• Example constants (assuming 4 bytes)

hexadecimal form00000000 00000000 00000000 01111011 0x7BL

octal form00000000 00000000 00000000 01111011 0173L

smallest10000000 00000000 00000000 00000000-2147483648L

largest01111111 11111111 11111111 111111112147483647L

negative form11111111 11111111 11111111 10000101 -123L

NoteBinary RepresentationConstant
decimal form 00000000 00000000 00000000 01111011 123L

Note “L” suffix

14

27

The unsigned long Data Type
• Description: A positive integer

• Size: System dependent
• Same as long

• Example constants (assuming 4 bytes)

hexadecimal form00000000 00000000 00000000 01111011 0x7BUL

octal form00000000 00000000 00000000 01111011 0173UL

smallest00000000 00000000 00000000 000000000UL

largest11111111 11111111 11111111 111111114294967295UL

NoteBinary RepresentationConstant
decimal form 00000000 00000000 00000000 01111011 123UL

Note “UL” suffix

28

The short Data Type
• Description: A positive or negative integer

• Same as signed short

• Size: System dependent
• 16 <= bits in short <= bits in int <= bits in long
• Usually 16 bits, alias 2 bytes

• Example constants (assuming 2 bytes)

hexadecimal form00000000 01111011 (short)0x7B

octal form00000000 01111011 (short)0173

smallest10000000 00000000 (short)-32768

largest01111111 11111111 (short)32767

negative form11111111 10000101 (short)-123

NoteBinary RepresentationConstant
decimal form 00000000 01111011 (short)123

No way to express constant of type short,
so must use cast

15

29

The unsigned short Data Type
• Description: A positive integer

• Size: System dependent
• Same as short

• Example constants (assuming 4 bytes)

hexadecimal form00000000 01111011 (unsigned short)0x7BU

octal form00000000 01111011 (unsigned short)0173U

smallest00000000 00000000 (unsigned short)0U

largest11111111 11111111 (unsigned short)65535U

NoteBinary RepresentationConstant
decimal form 00000000 01111011 (unsigned short)123U

No way to express constant of type unsigned short,
so must use cast

30

The signed char Data Type
• Description: A (small) positive or negative integer

• Size: 1 byte

• Example constants

hexadecimal form01111011 (signed char)0x7B

octal form01111011 (signed char)0173

smallest10000000 (signed char)-128

largest01111111(signed char)127

negative form10000101 (signed char)-123

NoteBinary RepresentationConstant
decimal form 01111011 (signed char)123

No way to express constant of type signed char,
so must use cast

16

31

The unsigned char Data Type
• Description: A (small) positive integer

• Size: 1 byte

• Example constants

hexadecimal form01111011 (unsigned char)0x7B

octal form01111011 (unsigned char)0173

smallest00000000(unsigned char)0

largest11111111(unsigned char)255

NoteBinary RepresentationConstant
decimal form 01111011 (unsigned char)123

No way to express constant of type unsigned char,
so must use cast

32

The char Data Type
• On some systems, char means signed char

• On other systems, char means unsigned char

• Obstacle to portability

int a[256];
char c;
c = (char)255;
…
… a[c] …

/* char is unsigned => a[255] => OK */
/* char is signed => a[-1] => out of bounds */

17

33

The char Data Type (cont.)
• On your system, is char signed or unsigned?

• Output on hats

#include <stdio.h>
int main(void) {

char c = (char)0x80;
if (c > 0)

printf("unsigned");
else

printf("signed");
return 0;

}

signed

34

The char Data Type (cont.)

• Q:
• Why is type char called “char” (meaning “character”)?

• A:
• Type char can be used for limited range arithmetic

• As indicated previously
• However, type char is used more often to store a

character code
• As shown next lecture

18

35

Summary
• Computer represents everything in binary

• Integers, floating-point numbers, characters, addresses, …
• Pixels, sounds, colors, etc.

• Binary arithmetic through logic operations
• Sum (XOR) and Carry (AND)
• Two’s complement for subtraction

• Binary operations in C
• AND, OR, NOT, and XOR
• Shift left and shift right
• Useful for efficient and concise code, though sometimes cryptic

• C integral data types
• char, short, int, long (signed and unsigned)

36

The Rest of the Week
• Reading

• Required: C Programming: 4, 5, 6, 7, 14, 15, and 20.1
• Recommended: Computer Systems: 2
• Recommended: Programming with GNU Software: 3, 6

• Monday office hours
• My office hours by appointment, instead of usual 4:30pm

• Wednesday’s lecture
• C Fundamentals

• Programming assignment
• A “Decomment” Program
• Due Sunday at 9pm

