Protein function prediction via analysis of interactomes

Elena Nabieva
Mona Singh

Department of Computer Science & Lewis-Sigler Institute for Integrative Genomics

January 22, 2008

1 Introduction

Genome sequencing efforts have resulted in an explosion of organisms whose entire protein com-
plements have been determined. Nevertheless, for many proteins, little is known beyond their
sequences, and for the typical proteome, between one-third and one-half of its proteins remain
uncharacterized. As a result, a major challenge in modern biology is to develop methods for deter-
mining protein function at the genomic scale.

Computational methods to assign protein function have traditionally relied on identifying se-
quence similarity to proteins of known function. In recent years, however, other computational
methods for predicting protein function have been developed (review, [33]). Many of these non-
homology based methods still utilize sequence information, but can predict that two proteins share
a function even when they have no sequence similarity. For example, in gene fusion methods [29,51],
two proteins are believed to be related functionally if they appear as parts of a single protein in
some other organism. Phylogenetic profiles [32,55] predict proteins to be functionally related if they
have similar patterns of occurrences across multiple genomes. Genomic context methods [22, 54]
predict functional coupling between proteins if they tend to be contiguous in several genomes.

Increasingly, computational techniques for predicting protein function have analyzed data re-
sulting from new high-throughput technologies. While there is a fascinating array of new functional
genomics technologies that have enabled prediction of protein function, in this chapter we examine
a family of methods that are based on analyzing large-scale protein-protein interaction data. Cur-
rently, several types of protein interactions have been determined via high-throughput experimental

technologies. These include interactions between proteins that interact physically, that participate



in a synthetic lethal or epistatic relationship, that are coexpressed, or where one phosphorylates
or regulates another (review, [77]). Together, these interactions comprise the interactome and can
be represented as networks or graphs, where interactions are undirected in the case of symmetric
interactions, and directed otherwise.

Here, we focus primarily on predicting protein function via analysis of networks comprised
of physical interactions. Most of these methods are based on the principle of guilt-by-association,
where proteins are annotated by transferring the functions of the proteins with which they interact.
The methods differ in whether they use local or global properties of the interactome in annotating
proteins, in which particular topological features of the interactome they utilize, in whether they rely
on first identifying tight clusters of proteins within the interactome before transferring annotations,
and in whether they use guilt-by-association explicitly or employ some other similarity measure.
While the focus of this chapter is on protein-protein physical interaction networks, it is often
straightforward to apply the same methods to other types of networks. However, as the underlying
topological features of these networks may differ, the methods may perform quite differently on
them. We refer the reader to other reviews [2,64] for alternative viewpoints that additionally
consider function prediction methods that integrate physical interaction networks with network

data derived from other experimental sources.

2 Further background

Physical interaction networks Large-scale physical interaction networks for several organisms
have been obtained via two-hybrid experiments, where an interaction between a pair of proteins is
determined via transcriptional activation in yeast [30]. An alternative high-throughput technology
determines interactions of proteins via affinity purification of the target protein followed by mass
spectrometry identification of the associated proteins (review, [9]). These two types of experiments
are the most commonly used approaches for large-scale determination of physical interactions and
have uncovered tens of thousands of interactions. However, they do impose certain features on the
data that may be less than ideal. The yeast two-hybrid method may discover interactions that do
not take place under physiological conditions and may miss interactions that do. The pull-down
methods do not specify if the interactions inferred for a target protein are direct or are instead
mediated through other associated proteins. Moreover, as with all experiments, especially high-

throughput ones, a certain amount of noise is present in the results; this amount may differ between



different experiments and between subsets of interactions found by the same experiment. To some
extent, this noise can be handled computationally by incorporating an assessment of interaction
reliability into the computational approach (see Section 3). It is worth noting as well that the
interactomes determined to date are incomplete, and that comparisons between existing data sets
for the same organism reveal only partial overlap; the latter is due both to noise in the data as well

as different sets of proteins under consideration.

Protein function Protein function is a broad concept that has different meanings depending on
context. In computational settings, protein function is typically described via terms from one of
several controlled vocabularies. Because of the differing degrees of specificity with which protein
function can be described, these controlled vocabularies are usually arranged as hierarchies or
directed acyclic graphs that relate the different terms to each other. The Gene Ontology (GO) [5]
is the most prevalent of such controlled vocabulary systems; it classifies protein function into
three separate categories, each of which consists of a set of terms that may be related to each
other via is-a or part-of relations; these relations can be represented as a directed acyclic graph.
Protein function in the usual sense is described by two of the categories, molecular function and
biological process. The molecular function of a protein describes its biochemical activity, whereas
its biological process specifies the role it plays in the cell, or the pathway in which it participates.
Additionally, GO has a cellular component category which describes the places where the protein
is found. These views of protein function are largely orthogonal: for example, proteins with the
same molecular function can play a role in different pathways, and a pathway is built of proteins
of various molecular functions. This distinction affects which methods are the most applicable for
computational prediction of protein function of each type. Because molecular function corresponds
to the intrinsic features of the protein (e.g., its catalytic activity), it is often predicted based
on sequence or structural similarity to proteins of known function. Biological processes, on the
other hand, are fundamentally collaborative; therefore, it is natural to predict them based on
a protein’s interaction partners. In this chapter, when we refer to a protein’s function, we will
typically mean its biological process, though network analysis of interactomes can also be useful for
predicting a protein’s cellular component; for example, several of the clustering methods reviewed
here focus as much on predicting membership within protein complexes (which are described by

cellular component annotations) as on predicting biological processes.



Mathematical formulation It is natural to represent the collection of protein physical interac-
tions discovered for an organism as an undirected graph or network, where the vertices represent
proteins and the edges connect vertices whose corresponding proteins interact. Each vertex is then
labeled with zero or more controlled vocabulary terms corresponding to the protein’s function(s).
The terms used as labels may furthermore participate in a relation described by a system like the
Gene Ontology. The function prediction problem then becomes the task of assigning labels to all
vertices in a network. This labeled graph representation makes the function prediction problem
amenable to the wealth of techniques developed in the graph theory and network analysis commu-
nities. For example, the idea of guilt-by-association, which is used by most approaches, turns the
problem of function prediction into the problem of identifying (possibly overlapping) regions in the
network that participate in the same biological process (i.e., should be assigned the same vertex
label). Broadly speaking, most of the methods used for the network-based functional annotation

utilize and extend well-understood concepts from graph theory, graphical models and/or clustering.

Notation More formally, a protein-protein interaction network is represented as a graph G =
(V, E), where there is a vertex v € V for each protein, and an edge (u,v) € E between two vertices
u and v if the corresponding proteins interact. Since we are considering physical interactions
between proteins, these edges are undirected. Throughout the chapter, we ignore self-interactions.
Let N denote the number of proteins in the network. The network can also be represented by its
N x N adjacency matrix A, where A,, = 1if (u,v) € E and 0 otherwise. Let F be the set of possible
protein functional annotations. Each protein may be annotated with one or more annotations from
F. That is, each vertex v € V may have a set of labels associated with it. The edges in the network
may be weighted; typically the weight w,, on the edge between u and v reflects how confident
we are of the interaction between w and v. If each interaction given in the network is considered
equally trustworthy, the network may be considered unweighted or with unit-weighted edges.
Many approaches discussed below utilize the “neighborhood” of a protein. Let N,(u) denote
the neighborhood of protein u within radius r; that is, N, (u) is the set of proteins where each
protein has some path in the network to u that is made up of at most r edges. Then Ny(u) consists
of protein u, Nq(u) consists of protein u and all proteins that interact with u, N2(u) consists of the
proteins in N7 (u) along with all proteins that interact with any of the proteins in N (u), and so on.
Note that the number of interactions of a protein u is given by |Ni(u)| — 1, since self-interactions

are not considered.



3 Incorporating interaction reliability

All methods for predicting protein function based on interaction networks face the issue of data
quality, as it is well known that high-throughput physical interaction data are noisy, and that dif-
ferent experimental data sets have varying reliability, even if they are based on the same underlying
technology (e.g., see [24,66,74]). A common practice to address the issue of noise is to include edge
weights that are chosen to reflect the reliability of interactions. Here, we review a simple scheme
for assessing physical interaction reliability [53], that is essentially the same as the ones used in
several approaches for the more general problem of data integration [41,73].

For each experimental source i (e.g., each high-throughput experiment may be considered one
source, and the collection of all small-scale experiments may be considered as a single different
source), let r; denote the probability that an interaction observed in this experiment is a true
physical interaction. Assuming that the observations and sources of error are independent for each
experimental source, one can estimate the probability of a physical interaction between proteins u
and v as:

1-— Hi(l — ’I"Z'),

where the product is taken over all experiments ¢ which observe an interaction between u and v.
This estimate can then be used as the weight w,,, of the edge between u and v. If r; is chosen to
be identical for all experimental sources, this approach simply gives higher reliability to physical
interactions that have been observed multiple times. A more meaningful approach is to estimate r;
for each experimental source ¢ by, for example, computing the fraction of interactions coming from
that source that connect proteins with a known shared function. It has been shown that a wide
range of network analysis algorithms perform better in predicting protein function when utilizing
this scheme for assessing interaction reliability than when considering all interactions as equally
likely [18,53]. There are other alternatives for estimating data set reliability. For example, it is
common for high-throughput experimental publications to report, along with data, some measure
of reliability for each reported interaction; this measure may be as simple as the number of times
an interaction has been observed or may be based on more sophisticated schemes (e.g., [34]).
Regardless of the specific method used to assess the reliability of an interaction, the importance of
treating different data sources separately has been demonstrated [67].

For well-studied organisms, the reliability of a physical interaction may also be estimated uti-

lizing data integration schemes that attempt to combine many different types of data (e.g., ex-



pression, localization and physical and genetic interaction) in order to functionally link proteins
(e.g., [40,48,68,73]). Each link is associated with a weight that represents the probability, or some
other confidence measure, that the two corresponding proteins are functionally related. Physical
interaction reliabilities may be justifiably estimated using functional linkage scores since a higher
functional similarity between two proteins suggests that the observed interaction is more likely to
be true. More generally, weighted networks derived via data integration techniques can themselves
be used for protein function prediction. Note however that though the problems are closely related,
predicting functional linkages is not the same as predicting the function of a protein, as a protein
can be linked with varying levels of confidence to several proteins with multiple biological process
annotations; some method or rule, such as one of those reviewed here, is still necessary to decide

which annotations are transferred.

4 Algorithms

A wide range of methods have been developed for analysing protein-protein interaction networks in
order to predict protein function. In the discussion below, we review some of these and categorize
them based upon their underlying algorithmic ideas as well as upon the extent to which they utilize

network structure. The approaches are also briefly outlined in Table 1.

4.1 Neighborhood approaches

The assumption of guilt-by-association naturally gives rise to a prediction method based on majority
vote that assigns to each protein the biological process that is most frequent among its direct
interactions [63]. In this case, the score for assigning to a protein uw a particular annotation a
could be the number of proteins that u interacts with that are annotated with a; alternatively,
the score may be computed as the fraction of u’s interactions that have annotation a. In the
case of weighted interaction networks, a weighted sum can be used instead. This majority or
neighborhood-counting method is limited in that it only uses local neighborhood information and
takes no advantage of more global properties of the network; it also has limited efficiency for poorly
annotated proteomes. Subsequent graph-theoretic approaches have attempted to generalize this
principle to consider linkages beyond the immediate neighbors in the interaction graph, both to
provide a systematic framework for analyzing the entire interactome as well as to make predictions

for proteins with no annotated interaction partners.



A simple way to extend the majority approach is to look at all proteins within a neighborhood
of specified radius and use the most over-represented functional annotation [38] as the prediction
for the protein of interest. That is, for each protein u and a fixed radius r, this neighborhood

approach considers all proteins in A,.(u) and then for each function, computes a score based on
(f=e)*
e

the x? test. In particular, the score is computed as , where f is the number of proteins
within the neighborhood having the function under consideration and e is the number of proteins
expected to have that function within the neighborhood, given the frequency of the function in the
entire network. The function with the highest x? score is assigned to the protein. With radius
one, this approach is similar to the simpler majority approach; note, however, that if two functions
annotate the same number of a protein’s direct neighbors, the neighborhood approach favors the
one that annotates fewer proteins in the entire interactome. While this approach moves beyond
direct neighbors, it does not consider the network topology within the local neighborhood. For
example, Figure 1 shows an interaction network where proteins u and v have the same count for each
annotation within radius two; thus the neighborhood approach treats these proteins equivalently
when considering a radius of two, despite the fact the evidence for protein w having the annotation
depicted by the color black is much stronger than it is for protein v. Perhaps because the method
completely ignores network topology within neighborhoods, its biological process predictions are
best when considering neighborhoods of radius one [38]. Moreover, even the radius-one predictions
perform worse than majority vote [53], suggesting that the decision to penalize more frequent
candidate functions may not be optimal; in fact, some of the methods we consider later in the
chapter, such as those based on Markov network techniques, use a function’s a priori frequency in
the opposite way. A recent extension of the neighborhood approach attempts to include proteins
at radius two while additionally utilizing some information about network topology by assigning
weights to each protein in the neighborhood by favoring the number of shared interactors it has
with the protein being annotated, and then scoring each function based on its weighted frequency

in the neighborhood [18].

4.2 Graph cuts

One systematic approach to consider the entire network and its annotations in a way that uses
information about network connectivity is to utilize the concept of graph cuts. A k-cut is de-
fined as a partition of the vertices of a graph into k sets, and the cost of the cut is sum of the

weights of the edges between vertices in different sets. This framework provides a natural appli-



Figure 1: A protein interaction graph annotated with two functions, depicted using black and
grey. White nodes correspond to proteins that do not have biological process annotations. When
annotating proteins u and v, a neighborhood approach [38] with radius two would make the same
prediction, even though the evidence in favor of predicting the function depicted by black is much

stronger for protein u than for protein v, and vice versa for the function depicted by grey.

cation of the guilt-by-association assumption at the full-network scale, as the cut problem can be
formulated so as to annotate proteins in a way that minimizes the weighted number of the edges
that violate this assumption (i.e., connect proteins having different function). Several cut-based
methods for function prediction have been developed [42,53,72]; they can either consider functions
simultaneously [53,72], or just one at a time [42].

If all functions are considered at the same time, the function prediction problem is a general-
ization of the computationally difficult minimum multiway k-cut problem [21], where the goal is to
partition a graph in such a way that each of the k£ terminal nodes belongs to a different subset of the
partition and such that the weighted number of edges that are “cut” in the process is minimized. In
the more general version of the multiway-cut problem relevant to the protein functional annotation
problem, the goal is to assign a function to all unannotated nodes so as to minimize the sum of the
weights of the edges joining nodes that have no (assigned or previously known) function in common
(i.e., these edges define the cuts). Formally, the problem in the case of function prediction can be

stated as minimizing
- Z Juvé(aua Uv) - Z hu(au)y
u,v u

where o, is functional assignment to node u, d(x,y) = 1 if x = y and 0 otherwise, Jy, is the
adjacency matrix for unlabeled vertices, and h, (o, ) is the number of classified neighbors of vertex

u labeled with o, [72]. For the weighted version, J,, and h,, can be easily modified to reflect edge



weights.

In the case where one function is considered at a time, each protein that is known to have that
function is labeled as a “positive” and each protein that is known to have some function but not
the one being considered is labeled as a “negative.” The optimization problem in that case can be

stated as minimizing

- E § Wy, vSusv,

U vy
where w,, ,, is the weight of edge (u,v), and s, is 1 if the vertex is labeled with the function being
evaluated and —1 otherwise [42]. If the graph is unweighted, w, , can be set uniformly to 1. It is
straightforward to see that this is a basic minimum cut/maximum flow problem, and thus exact
solutions are obtainable in polynomial time (e.g., see [19]).

Several techniques have been applied to solve these cut problems for interactomes. In the case
where one function at a time is considered, a deterministic approximation algorithm has been
applied to obtain a single solution per function [42]. In this application, a version is also considered
where edges are assigned (positive) weights based on the correlation of the corresponding proteins’
expression profiles. In subsequent work, this formulation has been solved exactly using a minimum
cut algorithm [52]. In the case where multiple functions are considered at once, simulated annealing
has been applied and solutions from several runs have been aggregated [72]. That is, the score of a
function for a particular protein is given by the number of runs in which the simulated annealing
solution annotates the protein with the function. The simulated annealing approach is a heuristic
and thus does not guarantee an optimal solution to the underlying optimization problem. However,
an integer linear programming (ILP) formulation for the generalized multiway-cut problem has
also been proposed [53]. While ILP is computationally difficult from a theoretical point of view, in
practice optimal solutions to this ILP, and thus the original optimization problem, can be readily
obtained for existing physical interactomes using AMPL [31] and the commercial solver CPLEX [39].

An important shortcoming of the basic cut formulation is that it ignores distance in the network.
For example, the network in Figure 2 has four minimum cuts of value one, and the cut criterion
does not favor any one cut over the other. However, we expect proteins that are closer together
in the network to have more similar biological process annotations than those that are further
apart. Thus, in the network in Figure 2, we would want the proteins closer to the black node to
be annotated with its function, and the proteins closer to the grey node to be annotated with its

function. As suggested by [53], one may begin to address this problem in the cut-based framework



. ) () () .

N N N
Figure 2: A protein interaction graph with two annotated functions, represented as black and grey
nodes. White nodes do not have biological process annotations. There are four ways to annotate
proteins so that only one edge is “cut”. However, the second protein from the left is more likely to

have the function depicted by the colored black than the second protein from the right. A single

cut of the graph does not take into account such distance effects.

by considering the multiplicity of optimal solutions. If we find all optimal cuts for the graph in
Figure 2, we observe that proteins closer to the black node are found more frequently in the same
cut as the black node than in the same cut as the grey node. Thus, the set of all optimal solutions
contains a sense of distance to annotated nodes. In the earlier simulated annealing approach
proposed for this problem, information from multiple solutions is utilized [72]. If each run does
indeed converge to an optimal solution, considering multiple runs amounts to sampling from the
space of optimal solutions. The ILP can also be modified to find multiple solutions [53]. The
score for a function for a protein is then the number of obtained solutions in which this function is

assigned to the protein.

4.3 Flow-based methods

One attempt to overcome the cut-based methods’ ignorance of distances in the network has been
proposed based on another concept from computer science, namely, network flow [53]. Intuitively,
network flow problems treat the graph as a collection of pipes having limited capacity (represented
as weights), and pose the question of the maximum amount of liquid that can be sent from a
specified source node to a specified sink node using those pipes. The network flow problem is dual
to the notion of graph cut (e.g., see [19]), as the size of the minimum cut between the source and
the sink turns out to be the limiting factor to maximum flow, and vice versa.

Network flow has been used as the inspiration for a simulation method for function predic-
tion [53]. Informally, each protein of known functional annotation is an infinite “source” of “func-
tional flow” that can be propagated to unannotated nodes, using the edges in the interaction graph
as a conduit. Each protein has a “reservoir” which represents the amount of flow that the node can
pass on to its neighbors at the next iteration, and each edge has a capacity (its weight) limiting

the amount of flow that can pass through the edge in one iteration. Each iteration of the algorithm

10



updates the reservoirs using simple local rules, whereby flow only spreads from proteins with more
filled reservoirs to those with less filled reservoirs, and a node pushes its flow to its neighbors pro-
portionally to the capacities of the respective edges. The simulation is run for a fixed number of
steps, and a functional score for each protein is obtained by summing the total amount of flow for
that function that the protein has received over the course of the simulation. This method exploits
network connectivity as multiple disjoint paths between functional sources and a protein results
in more flow to the protein. It also incorporates a notion of distance in the network as the effect
of each annotated protein on any other protein decreases with increasing distance between them:
if the algorithm is run for d iterations, then a source’s immediate neighbor in the graph receives
d iterations worth of flow from the source, while a node that is two links away from the source
receives d — 1 iterations worth of flow, and so on. Similarly, the number of iterations for which
the algorithm is run determines the maximum number of interactions that can separate a recipient
node from a source in order for the flow to propagate from the source to the recipient. For the
protein interaction context, a relatively small number of iterations has worked well in practice (e.g.,
less than half the diameter of the network). The reader is referred to [53] for the exact formulation
of the functional flow algorithm.

In subsequent work, a similar deterministic flow-based simulation approach has also been applied

for finding clusters in protein interaction networks [17].

4.4 Markov network-based methods

Cut-based methods for functional annotation have a more general probabilistic counterpart in
methods based on Markov networks [23,26,49], and these formulations can more fully address some
of the weaknesses of the cut-based methods. A Markov network, also known as a Markov random
field, is an undirected graphical model that represents the joint probability distribution of a set of
random variables. It is specified by an undirected graph where each vertex represents a random
variable and each edge represents a dependency between two random variables, such that the state
of any random variable is independent of all others given the states of its neighbors. The joint
distribution represented by a Markov random field is computed by considering a potential function
over each of its cliques. For N random variables X;, the probability of an assignment of the states
is given by:

1
Pr(Xl =T1,... 7XN — xN) e Ee_qu)k(x{k})7

11



where k enumerates all cliques, @ is the potential function associated with the k-th clique, Xy
gives the states of the k-th clique’s random variables, and Z is a normalizing constant.

In applications to network-based function annotation, one function has been considered at a
time [23,26]. Each protein has a random variable associated with it, and its state corresponds to
whether the function under consideration is assigned to the protein or not. It is assumed that the
joint distribution can be expressed in terms only of cliques of size at most two (i.e., edges). This
means that the potential function evaluating the network is a linear expression composed of terms

over the vertices and edges. So,

PI'(Xl =21,... ,XN = :BN) = %6_(2“6‘/ ¢1(X{“})+Z(uxv)€E¢2(X{“»”}))7

where ¢; computes the vertex “self-term” and the ¢o computes the pairwise edge term. The
self-term potential is chosen to correspond to the prior probability for annotating a protein with
a particular function; it takes into account the frequency of the function in the network. Note
that this is the opposite of what is done by the neighborhood method [38], which prefers less
frequent terms to those that are more frequent. The pairwise edge potential is chosen to have
different values corresponding to the three cases where either the interacting proteins both have
the function under consideration, or they both do not have that function, or one has that function
and the other does not; these values are determined using a quasi-likelihood method. Note that
these values are not necessarily the same for each function. As noted earlier [25], this model is
a generalization of the per-function cut-based method [42], and is similar to that of the multiple
function cut formulation [72]. In particular, the cut-based models assume the same fixed value
for interactions between proteins of the same function (or for interactions between a protein of
one function and any other), regardless of function; this may not be the best assumption, as the
guilt-by-association assumption may be true to different degrees for different functions. To make
a functional prediction for a protein, the posterior probability that a protein has the function of
interest is computed using Gibbs sampling, and then if this value is above a chosen threshold, the
function is predicted. Importantly, an exact computation of the posterior probability considers the
probability of all assignments of the random variables, and thus implicitly incorporates a distance
effect, where the impact of a protein’s function on unannotated proteins decreases with distance.
An alternate Markov network approach for protein function annotation [49] assumes that the
number of neighbors of a protein that have a particular functional annotation is binomially dis-

tributed according to a parameter that differs depending on whether the protein has that function

12



or not. The posterior probabilities for each protein are computed via a heuristic modification of

belief propagation (review, [76]).

4.5 Clustering

Another broad family of methods begins by first identifying components in the interaction network
that are likely to correspond to functional units, and then assigning functions to proteins based on
their membership in the functional unit. The underlying philosophy for most of these methods is
that cellular networks are organized in a modular fashion [37], and that these modules correspond
to sets of proteins that take part in the same cellular process or together comprise a protein com-
plex. Identification of functional modules is thus a somewhat stronger goal than simple functional
assignment. Most of the methods for identifying modules operate on the underlying assumption
that proteins within modules are more tightly connected than proteins in different modules; one
may think of this as the module-discovery problem’s analog of the guilt-by-association assumption.

Once functional modules, or clusters, are identified, they can be used for annotating unchar-
acterized proteins, as the most common functional annotation within a cluster can be transferred
to its uncharacterized proteins. Alternatively, one can look at overrepresentation instead of fre-
quency and transfer the functions that are enriched in a cluster according to the hypergeometric
distribution. Such an approach computes a p-value for a particular function in a cluster as:

i=f—1 (F\ (N—F
pr 3OO0,
per R )

where N is the number of proteins in the network, F' is the number of proteins in the network
annotated with the function under consideration, n is the size of the cluster, and f is the number of
proteins within the cluster annotated with that function. Like the neighborhood overrepresentation
method of [38], if two functions annotate the same number of proteins within a cluster, this method
favors the function that annotates fewer proteins in the interactome. We also note that one feature
of cluster-based function prediction methods is that it is possible and indeed not uncommon for
certain modules not to contain any annotated proteins, in which case functional assignment to such
a cluster cannot be made in a straightforward fashion.

Cluster analysis is a rich area with applications in many diverse fields. A large number of
clustering methods have been developed, both for the more familiar problem of clustering general
data that comes with some natural measure of similarity, and, to a lesser extent, for the more

specific problem of graph clustering. Many of these methods have been applied to interactome

13



data. Broadly speaking, the clustering methods we consider are either specific to the network
domain, or are based on standard distance- or similarity-based clustering techniques; in the latter
case, the key issue is typically in deciding on a suitable measure of distance or similarity between
two proteins in an interaction network. Additionally, the methods differ in the extent to which the
network features they exploit are local. In this regard, we note that some methods use only local
neighborhood information when clustering whereas others use more global features of the network;
nevertheless, even when using local features to cluster proteins, clustering can be performed on
the entire interactome, and thus in some sense, such clustering approaches incorporate the global

organization of the interactome as well.

4.5.1 Network-based clustering

Of the clustering approaches, those based on network clustering are perhaps the closest in spirit to
the cut- or flow-based annotation schemes: they explicitly attempt to partition the network into
contiguous components in such a way that there are more connections between proteins within a
component than between proteins belonging to different components. However, unlike the former
group of methods, cluster-based approaches typically do not begin with the prior information about
the partial assignment of function to neighbors; moreover, several graph clustering-based methods

focus on the more specific problem of identifying protein complexes.

Local clustering A number of local clustering approaches attempt to isolate highly connected
or dense components within the larger protein interaction network. The density of a set of vertices
may be defined in many ways. The density of a set of vertices V' is sometimes computed as the total
number of edges among the vertices in V’ divided by the total number of possible edges within V'
(i.e., (“Q)). Finding the densest subgraph of a particular size is a computationally hard problem,
and thus a number of heuristic approaches have been developed. In one approach, a Monte Carlo
procedure is developed that attempts to find a set of k nodes with maximum density [65]. A
special case of the density measure that has also been exploited to uncover dense components is
the clustering coefficient. It is computed for a vertex v as the density of the neighbors of v (i.e.,
Ni(v) with v excluded). In [7], each vertex is weighted using a measure similar to its clustering
coefficient, but that instead tries to exclude the effects of low-degree vertices. Low degree vertices
are frequent in protein interaction networks, and may artificially lower the clustering coefficients of

highly connected vertices in dense regions of the network that are also connected to several vertices

14



of low degree. The clustering coefficient is thus computed instead over a k-core of the neighbors
of each vertex, where k-cores are maximal subgraphs of degree > k. The vertex with the highest
weight seeds the search process, and clusters are greedily expanded from it, with vertices being
included in the cluster if their weights are above a given threshold. Once no more vertices can be
added, this process is repeated for the next highest weighted unseen vertex in the network.

A greedy graph clustering approach is also taken by [3]. Here, a cluster is grown so as to
maintain the density of the cluster above a particular threshold, and to ensure that each vertex
that is added to the cluster is connected to a large enough number of vertices already in the cluster.
The process is initialized by finding the vertex that takes part in the largest number of triangles
(i.e., has the largest number of common neighbors with its neighbors).

Dense substructures within protein networks have also been uncovered via spectral analysis [13].
Here, eigenvalues and eigenvectors of the adjacency matrix of the network are computed. For each
positive eigenvalue, its corresponding eigenvector is used to group together proteins. In partic-
ular, the proteins corresponding to the larger components of the eigenvector tend to form dense
subgraphs. Groupings are further filtered to be of sufficient size and to have large enough intercon-

nectivity.

Seeded module discovery Rather than finding clusters in protein-protein physical interaction
networks without any functional annotations, a few approaches start with a set of proteins in the
interaction network and attempt to identify modules around these “seed” proteins [6,8]. In the
context of protein function prediction, the seeds are proteins that are known to share some biological
process or take part in the same complex. In [8], each interaction is labeled with confidence or
reliability value in the range of 0 and 1, and a protein is added to the cluster if there exists a path
from any seed protein to it such that the product of the reliabilities of the edges in the path is greater
than a preselected threshold; for each protein, this corresponds to computing its shortest path to
any seed protein when mapping each edge reliability to its negative logarithm. This approach thus
scores the membership of a protein to the initial seed set using the probability of its connection via
the single-most probable path. In [6], random networks are used to compute the probability that
protein u is a member of the same group as the seed set of proteins. This probability is estimated
as the fraction of random networks in which a path exists from u to any protein in the seed set.
Each random network is generated by taking every edge in the original network, and adding it into

the network with probability proportional to its reliability in the original network. This approach

15



thus attempts to compute the probability of a connection to the initial seed set using any path in

the network.

Divisive hierarchical network clustering Girvan and Newman have proposed a divisive hier-
archical clustering procedure that is based on edge betweenness [35]. For any edge, its betweenness
is defined as the number of shortest paths between all pairs of vertices that run through that edge.
This technique, thus, uses global information about the protein network. Edges between modules
are expected to have more shortest paths through them than those within modules, and therefore
should have higher betweenness values. The overall hierarchical procedure partitions the network
by successively deleting edges with highest betweenness values. It has been applied to yeast and hu-
man interaction data [27]. The Girvan-Newman algorithm has also been modified so that shortest
paths are computed on weighted networks. In one approach, instead of counting the total number
of shortest paths through an edge, the total number of “non-redundant” shortest paths through an
edge are counted by considering paths that do not share an endpoint [16]. Edge weights are also
considered by this method; in this case, weights correspond to dissimilarities between endpoints,
rather than similarities or edge reliabilities.

The Girvan-Newman algorithm has also been modified so that the edge with lowest edge clus-
tering coefficient is iteratively deleted [58]. The edge clustering coefficient is a generalization of the
usual clustering coefficient, and measures the number of triangles to which a given edge belongs,
normalized by the number of triangles that might potentially include it. To deal with the special
case where the edge is found in no triangles, the edge clustering coefficient for edge (u, v) is actually

defined as:
Zupw +1
min{| NV (u)| — 2, |Ni(v)| — 2}’

where 2, , gives the number of triangles that edge (u, v) participates in. Unlike the edge betweenness

ECC(u,v) =

measure, the edge clustering coefficient is a local measure; however, in principle, this definition can
be extended to handle higher-order cycles as well. The edge clustering coefficient has been used to
uncover modules in yeast [75]. A related algorithm that combines both the global edge betweenness
measure with a local measure similar to the edge clustering coefficient has also been proposed [75].
This algorithm computes a local measure called the commonality index for each edge as

Zyw + 1
\/\Nl(u) — 1] - [NMi(v) — 1|.

C(u,v) =
The edge evaluation measure is then based on the observation that an edge connecting different

16



modules should have a low commonality and high edge betweenness. Therefore, the algorithm
removes edges (u,v) in the order of decreasing B(u,v)/C(u,v) ratio, where B(u,v) is the Girvan-
Newman betweenness, and C'(u,v) is the commonality index.

Divisive methods do not necessarily specify how to get modules or clusters from the hierarchical
grouping process. One proposed approach is to consider a set of vertices V' C V as a module if,
for each of its vertices, the number of interactions it has within V' (its indegree) is greater than
the number of interactions it has with vertices in V' — V' (its outdegree) [58]. This condition can
be weakened so that a module only requires that the sum of the indegrees for the all vertices in
the module be greater than the sum of their outdegrees. The partitioning of the network can now
be performed so that an edge with highest edge betweenness or lowest edge clustering coefficient is
only removed if it results in two modules [58]. A modified definition considers a set V'’ a module if
the ratio of the number of edges within V'’ to the number of edges from vertices in V' to vertices
outside of this set is greater than one [50]; this is almost the same criterion as that for a weak
module [58], except that edges within V' are not counted twice. This definition has been used to
uncover modules in an agglomerative procedure, where singleton vertices are considered initially
and edges are added back in, using the reverse Girvan-Newman ordering, only if the edge is not
between two modules. Modules have also been defined in terms of the structure of the hierarchical
cluster subtrees [75]. Here, a module consists of the nodes of a maximal subtree where all non-leaf
nodes have at least one child being a leaf, and two modules that have the same parent are merged

when the maximal commonality of edges between them is larger than a pre-defined cutoff.

Other network clustering approaches In [43], an initial random partitioning of the network
is modified by iteratively moving one protein from one cluster to another in order to improve the
clustering’s cost. For each protein, the cost measure considers the number of proteins within its
assigned cluster with which it does not interact, as well as the number of interactions from it to
proteins not assigned to its cluster; both should be small in ideal clusterings. In order to avoid
local minima, the local search is modified so as to occasionally disperse the contents of a cluster
at random. Additionally, a list of forbidden moves is kept to prevent cycling back to a previous
partition. Resulting clusters are then filtered for size, density, and functional homogeneity.
Another approach for clustering is based on uncovering so-called k-clique percolation clusters [1].
A k-clique is a complete subgraph over k£ nodes, and two k-cliques are considered adjacent if they

share exactly & — 1 nodes. A k-clique percolation cluster consists of nodes that can be reached via

17



chains of adjacent k-cliques from each other. An advantage of such an approach is that each protein
can belong to several clusters. Since a protein can have different roles in the cell, membership in
several clusters is biologically meaningful, and it may be useful to identify a strategy that can
recover multiple functions.

A clustering approach based on (modified) random walks within a network has also been de-
veloped [28,70]. The interaction network is transformed into a Markov process, where transition
probabilities from u to v and v to u are associated with each edge (u,v); that is, the adjacency
matrix is converted to a stochastic matrix. The stochastic-flow algorithm alternates between an
expansion step, which causes flow to dissipate within clusters, and an inflation step, which elim-
inates flow between different clusters. In the expansion step, the probability transition matrix is
squared; this corresponds to taking one more step in a random walk. In the inflation step, each
entry in the stochastic matrix is raised to the r-th power and then normalized to ensure that the
resulting matrix is stochastic again; for » > 1, the inflation step tends to favor higher probabil-
ity transitions, and thus tends to boost the probabilities of intra-cluster walks and demote those
of inter-cluster walks. This process is repeated until convergence, at which point the connected
directed components are evident. Note that in this algorithm, the inflation step distinguishes it
from simply taking (traditional) random walks on a graph. This stochastic flow-based clustering
procedure has been applied to a protein interaction network that has been transformed into a line
graph [56]. Here, each vertex in the new graph represents an interaction in the original network,
and any two vertices are adjacent if the corresponding interactions in original network involve a
common protein. Note that the line graph formulation allows the stochastic flow-based clustering

to place each protein into several clusters.

4.5.2 General distance-based clustering

Rather than use the guilt-by-association assumption directly and explicitly attempt to keep con-
nected nodes in the same cluster, many approaches to clustering interactomes rely instead on
assumptions about the similarity of cluster co-members’ patterns of connections to other vertices
in the graph. This makes it possible to use standard distance-based clustering techniques, such as
hierarchical clustering, on the resulting similarity or distance matrix. Various similarity measures
have been proposed for clustering interaction networks. In one approach [62], the similarity between
two proteins is determined by considering each protein’s interactions, and computing the signif-

icance of their number of shared interactions via the hypergeometric distribution. An alternate

18



approach that also measures the overlap between the sets of interactions for each pair of proteins

uses the Czekanowski-Dice distance [12]. For proteins u and v, this is given by:

_ Wi () AN ()
N1 () U NG ()] + NG () (NG o)

CD(u,v)

where A computes the symmetric difference between two sets. In addition to these two measures [12,
62], there are a number of other ways of computing the similarity or distance between two proteins
by considering only the overlap among their direct interactions [36,46]. In contrast to these purely
local measures, a more global measure can be used where the distance between two proteins is
calculated as the shortest path distance between them in the network [4]. In a related earlier
approach [59], each protein is associated with a vector that contains its shortest path distance to
all other proteins in the network. A similarity between two proteins is computed as the correlation
coefficient between their corresponding shortest-path vectors. Since global and local similarity
measures may be quite different, this global shortest-path based similarity measure has also been
used in conjunction with a local connectivity coefficient based on the common interactors of two
proteins [57].

For any of these measures, agglomerative hierarchical clustering is then performed by progres-
sively merging groups of proteins that are closest or most similar to each other. Neighbor-joining [61]
has also been used in the context of clustering interactomes [12]; it favors merging items that are
close to each other but also considers distances from the remaining items. As discussed earlier, hier-
archical clustering methods do not automatically give the final partitioning of the network. In [12],
the separation into clusters is performed using existing biological process annotations, whereby
each cluster must have at least half of its proteins annotated by the same term. This function is
then transferred to the other proteins in the cluster.

In some applications of distance-based hierarchical clustering, there can be a problem where
distances among several items are identical. This is the case, for example, when setting the distance
between two proteins as their shortest path distance in the network. One possible solution to this
problem is a two phase approach [4]. In the first phase, hierarchical clustering is performed multiple
times, and each time there is a “tie in proximity,” a random pair is chosen for merging. Each
clustering run is stopped according to a threshold that considers the distances between all proteins
in a cluster. In the second phase, the fraction of solutions in which each protein pair is clustered

together is then used as a similarity measure for a final round of clustering.

19



4.6 Kernel-based learning methods

Discriminative learning methods are another broad area in computer science that has been applied
to the problem of predicting protein function using interaction networks. The methods discussed
here use support vector machines (SVMs), machine learning methods which embed positive and
negative examples in a feature space and then find a maximal separating hyperplane in this space
between the positive and negative examples [14, 71]. In the context of function prediction via
network analysis, SVMs have been applied by considering each function in turn and labeling each
protein as either positive or negative based upon whether it is annotated with the function of
interest [47,69]. The key technical difficulty is how each protein u in the network is mapped to
a point z, in the feature space. If proteins are “close” in the network, then they should also be
close in the feature space. The mapping to the feature space can be given implicitly via a positive
definite kernel matrix K specifying the inner product (i.e., K., = xlx,); since the discriminant
function for SVMs is specified via inner products, explicit representations of the points are not
necessary.

In [47], two kernels are considered. First, a linear kernel is created where each entry K, is the
dot product of the N-dimensional vectors representing the interactions of proteins u and v. The
more similar the interaction patterns for the proteins, the larger this value is in the kernel matrix;
this kernel is similar in spirit to local clustering methods based on the similarity of immediate
interactors. It does not capture more global properties of the network. Second, a diffusion kernel [45]
is created where the kernel value K,, can be interpreted as the probability that a random walk
starting from u will be at v after infinite time steps; the transition probabilities between nodes
are dependent on a parameter specifying the rate of diffusion. The diffusion kernel accounts for
all possible paths connecting two proteins, and nodes that are connected with shorter paths or
by several paths are considered more similar. Thus this kernel utilizes some of the same network
features as the flow-based function prediction method and the stochastic-flow clustering approach.
It has been shown that the diffusion kernel captures the global constraint that the sum of the
Euclidean distances between connected samples is bounded, but that this can lead to large variances
in the pairwise distances [69]. This observation has led to the development of a locally constrained
diffusion kernel, which captures additional local constraints requiring that the Euclidean distance
between connected samples be more tightly bound. SVMs using the locally constrained diffusion

kernel are found to better predict protein function than those using the original diffusion kernel.

20



5 Assessment of prediction quality

It is natural to ask how different network-based methods for the function prediction problem per-
form in comparison to each other. Unfortunately, a comprehensive comparative evaluation of
these methods has not been done. Therefore, we briefly outline a couple of evaluation frame-
works that have been proposed and showcase the performance of some of the reviewed methods in
these frameworks. Overall, it is difficult to judge the comparative performance of different meth-
ods by surveying the literature. This is due in part to differences in the evaluation frameworks;
such differences include the measures used to assess performance quality, the treatment of multiple
annotations and predictions, the selection of a gold standard for functional annotation, the treat-
ment of the functional hierarchy, and the precise (and always changing) interaction networks under
consideration.

Some common features of evaluation frameworks are that most of the existing testing has been
performed in the baker’s yeast Saccharomyces cerevisiae, because of the quality and quantity of
data available for that organism, and that all frameworks use cross-validation testing. In this type
of testing, the annotations of one (or more) protein are considered as unknown, and the annotations

of the remaining proteins, along with the network, are used to predict its annotations.

Evaluation frameworks One way to treat the issue of multiple predictions and multiple anno-
tations is by using each prediction in the calculation of performance measurements. This is the
approach taken by [26], using annotations from YPD functional categories [20] and considering all
predictions with score above a cutoff. In this work, for each annotated protein uw with at least
one annotated interaction partner, it is assumed to be unannotated and its function is predicted.
Then, performance measurements are computed in terms of: k,, the number of known functions
for protein u; p,, the number of predicted functions for protein u; and o,, the amount of overlap
between the set of known and predicted functions. The precision (or positive predictive value) is

defined as:
Zu Oy
Zu DPu '

Precision =

The recall (or sensitivity) is defined as:

Recall = z“ Ou

In follow up work [25], 134 GO biological process terms are chosen for consideration if they annotate

more than 50 proteins and if none of their child biological process terms annotate the same set of

21



proteins. Since GO is a directed acyclic graph and functional terms can be related to each other via
is-a or part-of relationships, the authors suggest modifications to this basic scheme to accommodate
this hierarchical structure. A possible weakness in this per-prediction framework is that proteins
that have more annotations will have a larger effect on performance measurements.

An alternative approach [53] is to treat each protein as a data point when measuring perfor-
mance. In particular, for each protein, if the top scoring functional annotation is above some
threshold, it is the prediction for the protein. If a prediction is a known functional annotation, it is
considered a true positive, and otherwise, it is a false positive. Measuring performance per-protein
avoids the problem of proteins with many multiple annotations or predictions from dominating the
results, and makes the performance measures easily interpretable in terms of the number of proteins
that can be annotated at a certain confidence. This criterion still permits ties between top-scoring
predictions; in this case, a protein’s predicted annotation is counted as a true positive if more than
half of its top-scoring predictions are correct, and a false positive otherwise. This approach is taken
as a compromise between two extreme cases. In the first case, a prediction for a protein can be
counted as a true positive if at least one of the predictions made for it is correct; however, in this
case, a method that predicts every protein to participate in every function would only have true
positives in this framework. At the other extreme, a protein can be counted as a true positive if
every prediction made for it is correct. This, however, would count as false positives those proteins
that get many correct predictions and only one incorrect one. An alternative and perhaps better
approach would be to compute the precision and recall per-protein, and then average the results
over proteins. Here, a flat set of functional terms coming from the MIPS [60] functional hierarchy
was used for evaluation, with 72 biological process terms chosen from the second level of hierarchy.

A number of clustering approaches are evaluated in [11], based on how well they recapitulate
known yeast protein complexes. While this is not the same as assessing the performance of function
prediction, there is likely to be a relationship between the two; moreover, this study is likely to be
useful in designing a similar evaluation of clustering approaches in the context of function prediction.
The clustering algorithms are run both on simulated networks where complexes are embedded into
the graph, and edges are added and removed at various proportions, as well as on data sets obtained
in high-throughput experiments. Performance is measured by computing recall values (i.e., for each
complex, find the cluster which has the highest fraction of its proteins) and precision values (i.e.,
for each cluster, find the maximal fraction of its proteins found in the same annotated complex).

In theory at least, it is also possible to use either of the above approaches [26,53] to evaluate

22



how well the enriched biological processes in each cluster predict protein function. We expect
the evaluation of clustering for prediction of complexes to give different results than clustering
for function prediction, as, on the one hand, complex prediction may be a more specific problem
than function prediction, but, on the other hand, the dense network components that are readily
identified by clustering methods may be “easy cases” for function prediction, while more ambiguous

proteins in sparse regions may be left out of the clusters identified by some of the methods.

Comparative performance Nabieva et al. [53] test the majority, neighborhood, multiway-cut
and flow formulations in two-fold cross-validation on the yeast proteome using Receiver Operating
Characteristic (ROC) analysis. They find that the flow-based method generally outperforms other
methods. They also find, perhaps surprisingly, that the next best method is majority, which out-
performs neighborhood and multiway-cut formulations and performs as well as flow-based method
for proteins with at least three neighbors annotated with the same function.

The multiway-cut formulation was previously found to outperform the majority method [72].
However, the measure of success used to judge performance there was the fraction of times the
top prediction for each protein is correct, and the score of the top prediction was not considered.
ROC analysis, as in [53], with a varying threshold gives a more complete picture of performance,
particularly with respect to high-confidence predictions, and shows that majority outperforms the
cut-based method over a large false positive range, but the cut method is able to make predictions
when majority cannot. A subsequent paper [52] also finds that a cut-based approach does not
outperform a strictly local approach which predicts function based on the fraction (instead of
number) of neighbors with a particular function. In their case, the cut-based approach considered
is the pairwise min-cut problem of [42].

In [26], the authors find in leave-one-out testing that the Markov network approach [26] out-
performs the majority [63] and neighborhood approaches [38] on the yeast interactome.  The
significant added generality of the Markov network approach over the cut-based approach and its
implicit use of distance in the network may potentially explain why it performs better than majority
whereas the related cut-based methods do not; however, a weakness with the testing as performed
in [26] is that the a functional prediction for a protein is scored according to its rank when using the
majority and neighborhood methods. This means that the strength of the evidence for a functional
prediction from the protein’s neighborhood is not considered; for example, for the majority method,

it does not matter in this testing framework if the top-scoring function for a protein appears nine

23



times or one time among its direct interactions—both are treated equivalently. It remains to be
seen whether the Markov random field approach will outperform the local method when scores—mnot
ranks—are considered.

Other findings revealed in cross-validation testing include the necessity of multiple solutions for
the cut-based method in order to get higher confidence predictions, and a deteriorating performance
of the neighborhood method with increasing radius, reflecting the peril of using more distant nodes
without considering their distance or connectivity to the target node [53]. It is also observed that
all methods, including majority, multiway-cut, and functional flow improve when incorporating
interaction reliability [18,53].

These evaluations show that the strength of the functional signal from the local neighborhood
is the best indicator of whether or not a high-confidence prediction can be made: if a protein is
interacting with many proteins with known annotation, a majority scheme performs well, as do
other methods. Also, the results suggest that the information from immediate neighbors can be
used directly, and statistical information, such as that used in the x? criterion, is not necessarily
helpful. On the other hand, when a protein is known to interact with only unannotated proteins,
local approaches such as majority cannot make any predictions, whereas the cut, flow, Markov
network, and clustering methods can. More broadly, for proteins with few interactions or few
interactions with annotated proteins, which is likely to be the case for more recently characterized
proteomes, more global methods are necessary for functional predictions. Thus, global methods
are likely to be an important tool in characterizing proteins in unusual or less-studied proteomes.

As mentioned earlier, clustering methods have largely not been evaluated with respect to func-
tion prediction. However, the study of [11] finds that the stochastic flow-based clustering proce-
dure [70] is robust to alterations in the simulated data and clearly outperforms the other methods

tested [7,10,43] in extracting complexes from high-throughput physical interaction datasets.

6 Conclusions

The emergence of high-throughput techniques for determining protein physical interactions at the
genomic scale has provided large amounts of data that can be used for answering the challenge of
predicting protein function. Here, we have reviewed a number of methods that have been developed
for this problem. There are several promising directions for further research in this area.

First of all, it is clear that the area of function prediction via network analysis is in need of

24



a comprehensive and systematic evaluation framework. Such an evaluation will ideally attempt
to answer not only which methods perform better but also why. We expect different methods
to perform well in different circumstances, and ideally an evaluation would bring to light which
method should be used in which situation. In particular, it should be possible to relate topological
features and annotation density of the network to performance. For example, local methods may be
expected to perform well on dense or well-annotated networks. Since the experimentally determined
interactomes of various organisms in their present state differ with respect to their coverage, network
density, and known annotations, such an evaluation will be vital for guiding researchers towards an
appropriate prediction method for their particular needs.

In terms of methodological directions, a potentially fruitful area that is in need of principled
exploration is a closer study of protein annotations, and in particular, of the relationships be-
tween functions. One promising line of research involves developing techniques for exploiting the
hierarchical nature of protein function classification. Currently, many methods address the issue
only at the evaluation step, and often use a flat set of terms which are then treated as unrelated
labels; the flat set may include the leaf terms of the functional hierarchy (i.e., the most specific
descriptors) or a hand-picked set of terms. In the latter case, more specific functional annotations
may be “upcast” to their ancestor term(s) in the flat set, and less specific annotations are ignored.
The development of methods that more directly exploit the functional hierarchy as part of the
prediction algorithm is likely to be fruitful. A related research direction is to accommodate func-
tional relationships between interacting proteins that go beyond guilt-by-association, which forms
the basis of most methods currently used for network-based function prediction. Simply stated,
if guilt-by-association were completely true, all proteins in an organism would be engaged in the
same non-trivial biological process. This is clearly not the case; moreover, biological “cross-talk”
is evident in interactomes [63], as there are many pairs of different biological processes recurring as
annotations for interacting proteins. Understanding and leveraging the interplay between biological
processes should benefit future methods for predicting protein function. Promising research along
both of these lines has been initiated [15,44]. Lastly, an intriguing possibility is to relate modu-
larity to the distance in the network along which functional connections hold. The assumption of
modularity suggests that guilt-by-association may hold on mezoscale, along the size of a functional
module, but at larger network distances understanding of the cross-talk between processes may
become more relevant for function prediction.

The area of function prediction via network analysis is based on recently available data and is

25



thus relatively new, yet its graph-theoretic formulation enables it to tap into decades of algorithmic
and methodological advances in computer science and applied mathematics. In the coming years, we
expect to see further methodological developments in this area, as well as the establishment of more
uniform testing frameworks. Together with the growth of interaction data and the improvement of
the accuracy of experimental techniques for interaction determination, these developments promise
to give network analysis methods a position of increasing prominence in computational function

prediction.

7 Acknowledgments

This work has been supported by NSF CCF-0542187, NSF 11S-0612231, NIH GMO076275, and the
NIH Center of Excellence grant P50 GM071508.

26



Table 1: Summary of methods for predicting protein function via network analysis

Majority: consider how often a function is seen as annotation of a proteins’ immediate interactors [63].

Neighborhood

Neighborhood: consider neighborhood of radius 1, 2, or 3 and compute over-representation of a function in
approaches that neighborhood, as judged by the x? test [38].

Weighted neighborhood: consider neighborhood of radius 2, and assign function based on weighted paths

from the target protein to neighborhood proteins [18].

Multiway cut: consider all functions simultaneously [72] (NP-hard). Solve approximately via Monte Carlo
Cut-based approach [72] or exactly via ILP [53].

Mincut: consider one function at a time [42]. Solve approximately via heuristic [42] or exactly via flow [52].
Flow-based Assign functions via simulation of “functional flow” from annotated nodes [53].

Markov network

Use pairwise potential over interacting proteins [26] or assume that the number of neighbors of a protein
that have a particular function is binomially distributed according to whether the protein has the function

in question or not [49]. One function is modeled at a time.

Local graph

clustering

Find high-density subgraphs of specified size via Monte Carlo methods [65].

Starting from a locally dense node as seed, greedily add vertices according to their local neighborhood den-
sity (k-core clustering coefficient) [7], or according to their connectedness to the cluster while maintaining

cluster density and vertex cluster property above a cutoff [3].

Spectral analysis: build clusters consisting of nodes corresponding to the larger components of eigenvectors

for positive eigenvalues of adjacency matrix [13].

Seeded module

discovery

Add proteins to cluster that have sufficiently reliable paths to any seed protein [8].

Add proteins to cluster that are grouped together with the seed proteins in sufficiently many random

networks [6].

Network-based hierarchical clustering

Apply Girvan-Newman (GN) algorithm, building a hierarchical clustering by removing edges with highest
edge-betweenness [27]; extend the GN algorithm to weighted graphs and modify to consider non-redundant
paths [16]; extend the GN algorithm to additionally consider local measure (edge commonality) [75]; perform

agglomerative clustering in the reverse order of the GN edge removal [50].

Distance-based
hierarchical

clustering

Cluster proteins according to the overlap between their common interactors using hypergeometric distribu-

tion [62]; or Czekanowski-Dice distance [12].

Cluster proteins according to a distance based on their shortest path length and using randomization to
break ties [4].

Cluster proteins according to the similarity of their all-pairs shortest-path profiles [59]; combine this global

measure with local measure based on direct interactors [57].

Other graph

clustering

Starting with a random initial clustering, apply moves to improve the clustering cost, which favors few

missing edges within clusters and few present edges between clusters [43].

Cluster proteins that belong to a path of adjacent k-cliques [1].

Stochastic-flow clustering: alternate random-walk steps with steps that amplify the inter-cluster distance

[70]. Has been applied to line graph transformation of network [56].

Supervised learning

Train SVM utilizing an appropriate kernel that captures the distance between two proteins in the network.

Linear, diffusion, and locally-constrained diffusion kernels have been applied [47,69].

27




References

1]

[4]

[5]

[11]

[12]

B. Adamcsek, G. Palla, 1. Farkas, I. Derenyi, and T. Vicsek. Cfinder: locating cliques and

overlapping modules in biological networks. Bioinformatics, 22:1021-1023, 2006.

T. Aittokallio and B. Schwikowski. Graph-based methods for analysing networks in cell biology.
Briefings in Bioinformatics, 7:243-255, 2006.

M. Altaf-Ul-Amin, Y. Shinbo, K. Mihara, K. Kurokawa, and S. Kanaya. Development and im-
plementation of an algorithm for detection of protein complexes in large interaction networks.

BMC Bioinformatics, 7:207, 2006.

V. Arnau, S. Mars, and 1. Marin. Iterative cluster analysis of protein interaction data. Bioin-

formatics, 21:364-378, 2005.

M. Ashburner, C. Ball, J. Blake, D. Botstein, H. Butler, J. Cherry, et al. Gene ontology: tool
for the unification of biology. The gene ontology consortium. Nat. Genet., 25(1):25-29, 2000.

S. Asthana, O. King, F. Gibbons, and F. Roth. Predicting protein complex membership using
probabilistic network reliability. Genome Res., 14:1170-1175, 2004.

G. Bader and C. Hogue. An automated method for finding molecular complexes in large

protein interaction networks. BMC Bioinformatics, 4:2, 2003.

J. Bader. Greedily building protein networks with confidence. Bioinformatics, 19:1869-1874,
2003.

A. Bauer and B. Kuster. Affinity purification-mass spectrometry. Eur. J. Biochem., 270:570—
578, 2003.

M. Blatt, S. Wiseman, and E. Domany. Superparamagnetic clustering of data. Phys. Rew.
Lett., 76:3251-3254, 1996.

S. Brohee and J. van Helden. Evaluation of clustering algorithms for protein-protein interaction

networks. BMC' Bioinformatics, 7:488, 2006.

C. Brun, F. Chevenet, D. Martin, J. Wojcik, A. Guenoche, and B. Jacq. Functional classi-
fication of proteins for the prediction of cellular function from a protein-protein interaction

network. Genome Biol., 5:R6, 2003.

28



[13]

[14]

[18]

[21]

[22]

[23]

D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, et al. Topological structure analysis of the
protein-protein interaction network in budding yeast. Nucl. Acids. Res., 31:2443-2450, 2003.

C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and

Knowledge Discovery, 2(2):121-167, 1998.

S. Carroll and V. Pavlovic. Protein classification using probabilistic chain graphs and the Gene

Ontology structure. Bioinformatics, 22:1871-1878, 2006.

J. Chen and B. Yuan. Detecting functional modules in the yeast protein-protein interaction

network. Bioinformatics, 22:2283-2290, 2006.

Y.-R. Cho, W. Hwang, M. Ramanathan, and Aidong Zhang. Semantic integration to identify
overlapping functional modules in protein interaction networks. BMC Bioinformatics, 8:265,

2007.

H. Chua, W.-K. Sung, and L. Wong. Exploiting indirect neighbors and topological weight
to predict protein function from protein-protein interactions. Bioinformatics, 22:1623-1630,

2006.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.

MIT Press/McGraw-Hill, 1990.

M.C. Costanzo, M. E. Crawford, J. E. Hirschman, J. E. Kranz, P. Olsen, L. S. Robertson, M. S.
Skrzypek, B. R. Braun, K. L. Hopkins, P. Kondu, C. Lengieza, J. E. Lew-Smith, M. Tillberg,
and J. I. Garrels. YPD™™_ PombePD™  and WormPD”M: Model organism volumes of

the BioKnowledge library, an integrated resource for protein information. Nucl. Acids Res.,

29:75-79, 2001.

E. Dalhaus, D. S. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis. The complexity
of the multiway cuts. In Proc. 24th Annual STOC, pages 241-251. ACM, 1992.

T. Dandekar, B. Snel, M. Huynen, and P. Bork. Conservation of gene order: a fingerprint of
proteins that physically interact. Trends Biochem. Sci., 23(9):324-328, 1998.

M. Deng, T. Chen, and F. Sun. An integrated probabilistic model for functional prediction of
proteins. In Proc. 7th Annual RECOMB, pages 95-103. ACM, 2003.

29



[24]

[25]

M. Deng, F. Sun, and T. Chen. Assessment of the reliability of protein-protein interactions

and protein function prediction. In Pac. Symp. Biocomput., pages 140-151, 2003.

M. Deng, Z. Tu, F. Sun, and T. Chen. Mapping gene ontology to proteins based on protein-
protein interaction data. Bioinformatics, 20:895-902, 2004.

M. Deng, K. Zhang, S. Mehta, T. Chen, and F. Sun. Prediction of protein function using
protein-protein interaction data. J. Computational Biol., 10:947-960, 2003.

R. Dunn, F. Dudbridge, and C. Sanderson. The use of edge-betweenness clustering to investi-

gate biological function in protein interaction networks. BMC' Bioinformatics, 6:39, 2005.

A. Enright, S. Van Dongen, and C. Ouzounis. An efficient algorithm for large-scale detection

of protein families. Nucleic Acids Res, 30:1575-1584, 2002.

A.J. Enright, I. lliopoulos, N. C. Kyrpides, and C. A. Ouzounis. Protein interaction maps for

complete genomes based on gene fusion events. Nature, 402:86-90, 1999.

S. Fields and O.-K. Song. A novel genetic system to detect protein-protein interactions. Nature,

340:245-246, 1989.

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical
Programming. Brooks/Cole Publishing Company, Pacific Grove, CA, 2002.

T. Gaasterland and M. Ragan. Microbial genescapes: phyletic and functional patterns of ORF
distributions among prokaryotes. Microb. Comp. Genomics, 3:199-217, 1998.

M. Galperin and E. Koonin. Who’s your neighbor? New computational approaches for func-

tional genomics. Nat. Biotechnol., 18:609-613, 2000.

L. Giot, J. Bader, C. Brouwer, A. Chaudhuri, B. Kuang, Y. Li, et al. A protein interaction
map of Drosophila melanogaster. Science, 302:1727-1736, 2003.

M. Girvan and M. Newman. Community structure in social and biological networks. Proc.

Natl. Acad. Sci. USA, 99:7821-7826, 2002.

D. Goldberg and F. Roth. Assessing experimentally derived interactions in a small world.

Proc. Natl. Acad. Sci. USA, 100:4372-4376, 2003.

30



[37]

[38]

[39]

[40]

[48]

[49]

L. Hartwell, J. Hopfield, S. Leibler, and A. Murray. From molecular to modular cell biology.
Nature, 402:C47-52, 1999.

H. Hishigaki, K. Nakai, T. Ono, A. Tanigami, and T. Takagi. Assessment of prediction accuracy

of protein function from protein—protein interaction data. Yeast, 18:523-531, 2001.
ILOG CPLEX 7.1, 2000. http://www.ilog.com/products/cplex/.

R. H. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. Krogan, S. Chung, et al. A Bayesian
networks approach for predicting protein-protein interactions from genomic data. Science,

302:449-453, 2003.

T. Joshi, Y. Chen, J. Becker, N. Alexandrov, and D. Xu. Genome-scale gene function prediction

using multiple sources of high-throughput data in yeast. OMICS, 8:322-333, 2004.

U. Karaoz, T. M. Murali, S. Levotsky, Y. Zheng, C. Ding, C. R. Cantor, and S. Kasif. Whole-
genome annotation by using evidence integration in functional-linkage networks. Proc. Natl.

Acad. Sci. USA, 101:2888-2893, 2004.

A. King, N. Przulj, and I. Jurisica. Protein complex prediction via cost-based clustering.

Bioinformatics, 20:3013-3020, 2004.

M. Kirac, G. Ozsoyoglu, and J. Yang. Annotating proteins by mining protein interaction

networks. Bioinformatics, 22:6260-e270, 2006.

R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In

Proc. Intl. Conf. on Machine Learning, pages 315-322, 2002.

R. Krause, C. von Mering, and P. Bork. A comprehensive set of protein complexes in yeast:

mining large-scale protein-protein interaction screens. Bioinformatics, 19:1901-1908, 2003.

G. Lanckriet, T. Bie, N. Cristianini, M. Jordan, and W. Noble. A statistical framework for
genomic data fusion. Bioinformatics, 20:2626-2635, 2004.

I. Lee, S. Date, A. Adai, and E. Marcotte. A probabilistic functional network of yeast genes.
Science, 306(5701):1555-1558, 2004.

S. Letovsky and S. Kasif. Predicting protein function from protein/protein interaction data:

a probabilistic approach. Bioinformatics, 19 Suppl 1:i1197-204, 2003.

31



[50]

[51]

[54]

[55]

[57]

[58]

[61]

F. Luo, Y. Yang, C. Chen, R. Chang, J. Zhou, and R. Scheuermann. Modular organization of
protein interaction networks. Bioinformatics, 23:207-214, 2007.

E. Marcotte, M. Pellegrini, H. Ng, D. Rice, T. Yeates, and D. Eisenberg. Detecting protein

function and protein-protein interactions from genome sequences. Science, 285:751-753, 1999.

T. Murali, C.-J. Wu, and S. Kasif. The art of gene function prediction. Nat. Biotechnol.,
24:1474-1475, 2006.

E. Nabieva, K. Jim, A. Agarwal, B. Chazelle, and M. Singh. Whole-proteome prediction of
protein function via graph-theoretic analysis of interaction maps. Bioinformatics, 21 Suppl.

1:1302-1310, 2005.

R. Overbeek, M. Fonstein, M. D’Souza, G. Pusch, and N. Maltsev. The use of gene clusters
to infer functional coupling. Proc. Natl. Acad. Sci. USA, 96(6):2896-2901, 1999.

M. Pellegrini, E. Marcotte, M. Thompson, D. Eisenberg, and T. Yeates. Assigning protein
functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad.

Sci. USA, 96(8):4285-4288, 1999.

J. Pereira-Leal, A. Enright, and C. Ouzounis. Detection of functional modules from protein

interaction networks. Proteins, 54:49-57, 2004.

J. Poyatos and L. Hurst. How biologically relevant are interaction-based modules in protein

networks? Genome Biol., 5:R93, 2004.

F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and identifying
communities in networks. Proc. Natl. Acad. Sci. USA, 101(9):2658-2663, 2004.

A. Rives and T. Galitski. Modular organization of cellular networks. Proc. Natl. Acad. Sci.
USA, 100(3):1128-1133, 2003.

A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, et al. The FunCat,
a functional annotation scheme for systematic classification of proteins from whole genomes.

Nucleic Acids Res., 32:5539-5545, 2004.

N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing phylo-
genetic trees. Mol. Biol. Evol., 4:406-425, 1987.

32



[62]

[63]

[64]

[65]

[66]

[69]

[70]
[71]

[72]

[73]

M. Samanta and S. Liang. Predicting protein functions from redundancies in large-scale protein

interaction networks. Proc. Natl. Acad. Sci. USA., 100:12579-12583, 2003.

B. Schwikowski, P. Uetz, and S. Fields. A network of protein-protein interactions in yeast.

Nat. Biotechnol., 18:1257-1261, 2000.

R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein function. Molecular
Systems Biology, 3:88, 2007.

V. Spirin and L. A. Mirny. Protein complexes and functional modules in molecular networks.

Proc. Natl. Acad. Sci. USA., 100:12123-12128, 2003.

E. Sprinzak, S. Sattath, and H. Margalit. How reliable are experimental protein-protein inter-

action data? J. Mol. Biol., 327(5):919-923, 2003.

S. Suthram, T. Shlomi, E. Ruppin, R. Sharan, and T. Ideker. A direct comparison of protein

interaction confidence assignment schemes. BMC' Bioinformatics, 7:360, 2006.

O. Troyanskaya, K. Dolinski, A. Owen, R. Altman, and D. Botstein. A Bayesian framework
for combining heterogeneous data sources for gene function prediction (in S. cerevisiae). Proc.

Natl. Acad. Sci. USA, 100:8348-8353, 2003.

K. Tsuda and W. Noble. Learning kernels from biological networks by maximizing entropy.

Bioinformatics, 20 Suppl. 1:1326-i333, 2004.
S. van Dongen. Graph clustering by flow simulation. PhD thesis, University of Utrecht, 2000.
V Vapnik. Statistical Learning Theory. Wiley, 1998.

A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Global protein function prediction

from protein-protein interaction networks. Nat Biotechnol., 21:697-700, 2003.

C. von Mering, M. Huynen, D. Jaeggi, S. Schmidt, P. Bork, and B. Snel. STRING: a database

of predicted functional associations between proteins. Nucleic Acids Res., 31:258-261, 2003.

C. von Mering, R. Krause, B. Snel, M. Cornell, S. Oliver, S. Fields, and P. Bork. Comparative

assessment of large-scale data sets of protein-protein interactions. Nature, 417:399-403, 2002.

C. Wang, C. Ding, Q. Yang, and S. R. Holbrook. Consistent dissection of the protein interaction
network by combining global and local metrics. Genome Biol., 8:R271, 2007.

33



[76] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief propagation and its general-
izations. In FEzxploring artificial intelligence in the new millennium, pages 239-269. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[77] X. Zhu, M. Gerstein, and M. Snyder. Getting connected: analysis and principles of biological
networks. Genes and Development, 21:1010-1024, 2007.

34



