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Summary: In this lecture, we show two results dealing with lower
bounds in communication complexity. The first lower bound is an
Ω(n) lower bound on the distributional complexity of Disjointness
due to [3, 8]. Here we will present the simplified proof presented in
[8]. In the second part, we will show how to obtain lower bounds
on the unbounded error probabilistic communication complexity by
Forster’s method [2] of lower-bounding the sign rank of the corre-
sponding matrix by showing that it has a small spectral norm.

1. Disjointness lower bound

In the first part of the lecture, we will try to lower bound the ε-error probabilistic
communication complexity of a predicate A, Cε(A) by using the concept of the
Distributional complexity.

The ε-error distributional communication complexityDµ
ε (A) is the minimum cost

(w.r.t. number of communications, measured in say, bits) deterministic protocol P
such that

(1) Prµ[P (X,Y ) = A(X,Y )] ≥ 1− ε

where µ is a given probability distribution over the inputs X and Y (each n bits
long) to the two parties. Yao showed that Dµ

ε (A) can be used to lower bound Cε(A)
as Cε(A) ≥ 1

2D
µ
2ε(A) [5].

We will now prove a Ω(n) lower bound on probabilistic communication complexity
of the Disjointness function by constructing a µ for which Dµ

ε (DISJn) = Ω(n)
where DISJn is the Disjointness predicate, where the inputs X and Y are ∈ {0, 1}n
each representing a subset of {1, 2, . . . , n} (represented as [n]).

Theorem 1.1. ∃µ such that Dµ
ε (DISJn) ≥ Ω(n) where ε < 1

100 , where

(2) DISJ(X,Y ) =
{

1 if X ∩ Y = ∅
0 otherwise

Proof. We first give the probability distribution µ over the inputs. Let n = 4m− 1
and let T = (Tx, Ty, {i}) be an arbitrary partition of [n] such that |Tx| = |Ty| =
2m − 1. Now, the input to the first party, an m-element set X(|X| = m) is
chosen uniformly at random from Tx ∪ {i}, and the m-element set Y is similarly
chosen uniformly at random from Ty ∪ {i}. Let X0(Y0) correspond to an input
X(resp. Y ) such that i /∈ X(resp. Y ), and X1(resp Y1) correspond to an input
such that i ∈ X(resp. Y ). Hence, in the distribution defined, we get inputs of the
types (X0, Y0), (X0, Y1), (X1, Y0) and (X1, Y1) with an equal probability of 1

4 each.
1
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Let A be the set of inputs of the type (X1, Y1) (DISJ value 1) and B be the other
inputs with non-zero weight (DISJ value 0). The proof of the theorem follows
from Lemma 1.5 as follows.
Let Dµ

ε = k. Let R1, R2, . . . , Rt (with t ≤ 2k) be the (almost) monochromatic
rectangles which have the function value 1.

µ(B ∩
t⋃
i=1

Ri) ≤ ε

µ(B ∩
t⋃
i=1

Ri) =
t∑
i=1

µ(Ri ∩B)

≥
t∑
i=1

αµ(A ∩Ri)− 2−δn (from Lemma 1.5)

≥ α(
3
4
− ε)− t2−δn

Hence by choosing a small enough ε, we get k = Ω(n). �

The lemma 1.5 shows that in any rectangle (of inputs) which is not too small
(weight more than 2−δn

α ), R = X × Y, the number of inputs which return a (dis-
jointness) function value 0 is not too small, hence showing that no rectangle(which
is not too small) is close to be being monochromatic. However, we show another
lemma with a similar flavour first.

Lemma 1.2. For any R = X× Y , where X,Y ⊆ 2[n],

(3) P [(x1, y1) ∈ R] ≥ αPr[(x0, y0) ∈ R]− 2−Ω(n)

Proof. Let t = (tX , tY , {i}) be a partition of [n]. For ease of notation, we define
the following terms:

p(t) = Pr(X ∈ X|T = t)(4)
p0(t) = Pr(X0 ∈ X|T = t)(5)
p!(t) = Pr(X1 ∈ X|T = t)(6)

(7)

Further, we call a partition t = (tX , tY , {i}) X-bad if

(8) p1(t) <
1
3
p0(t)− 2−εn

Similarly we define the terms q(t), q0(t), q1(t) and Y-bad for the inputs to the second
party Y . We also call a partition t bad iff it is either X-bad or Y-bad. To prove the
lemma, we would like to show that most partitions are not bad (claim 1.3).

We first observe that by fixing the partition T = (TX , TY , {i}), the two quantities
Pr(X1 ∈ R) and Pr(Y1 ∈ R) becomes independent 1. Hence

(9) Pr[(Xλ, Yλ) ∈ R] = Et[pλ(t)qλ(t)] for λ ∈ {0, 1}

1This method of fixing t to make the two events independent in order to get a convex com-

bination has also been used subsequently in the proof of the Parallel Repetition theorem by Raz
[7].
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We also observe that

(10) p(t) =
1
2

(p0(t) + p1(t))

Finally, we note that fixing tY , fixes p(t) and q0(t) and fixing tX , also fixes q(t) and
p0(t).
Now, we will proceed to show the lemma component-wise.

Claim 1.3. For every set tY ⊆ [n] such that |tY | = 2m− 1,

(11) Pr(T is X-bad |TY = tY ) <
1
5

Proof. Given tY , X ←R [n]\tY (with |X| = m), and hence Pr(T is X-bad|TY = tY )
becomes fixed too.
If p(t) < 2−εn, from equation 10, p0(t) ≤ 2p(t). Hence, if t is X-bad,
p1(t) < 1

3p0(t)− 2−εn < − 1
32−εn < 0, which is impossible.

Consider the case when p(t) ≥ 2−εn. Let Γ = X ∩ {X|X ⊆ [n] s.t |X| = m}.
p(t) = |Γ|

(2m
m ) . Also, if s←R Γ, then,

p0(t) = 2p(t)Pr(i ∈ s)

This follows because,

p0(t) = Pr(X ∈ X|t = t, i /∈ X)
= 2Pr(X ∈ X, i /∈ X|T = t)
= 2Pr(i /∈ X|X ∈ X, T = t)Pr(X ∈ X|T = t)
= 2p(t)Pr[i /∈ s]

Similarly,
p1(t) = 2p(t)Pr(i /∈ s)

Now, if partition t is X-bad, we have from equations 8,1,1

(12) Pr[i ∈ s] < 1
3
Pr[i /∈ s]− 2−εn

2p(t)

Since p(t) ≥ 2−εn, Pr[i ∈ s] < 1
3Pr[i /∈ s]. Hence,

(13) Pr(i ∈ s) < 1
4

Let {i1, i2, . . . , i2m} = [n]− Ty and let ~s = (s1, s2, . . . , s2m) where the sj indicates
whether ij ∈ s. We now show that claim by using an entropy argument on the
possible choice of vectors ~s. Let the claim 1.3 not hold, in which case
Pr[T = (TX , TY , {i}) is X-bad|TY = Ty] ≥ 1

5 . Then, calculating the entropy we
get

H(s) ≥ m(2− 4ε− o(1))

H(s) ≤
∑

i = 12mH(si)

≤ 8m
5

+
2m
5
H(

1
4

)

≤ 1.93m

which is a contradiction if we choose a small enough ε. Hence the claim is true. �
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Let Bad(T ) denote the indicator of the event T = (TX , TY , {i}) being Bad, and
let BadX(T ), BadY (T ) be the indicator of the events T being X-Bad and Y-Bad
respectively. In the next claim, we prove that contribution of non-Bad partitions
T to the RHS of Lemma 1.2 is insignificant.

Claim 1.4.

ET [p0(T )q0(T )Bad(T )] ≤ 4
5

ET [p0(T )q0(T )]

Proof. Since Bad(T ) ≤ BadX(T ) +BadY (T ), and by symmetry, it suffices to show
that

ET [p0(T )q0(T )BadX(T )] ≤ 2
5

ET [p0(T )q0(T )]

Fixing TY also fixes p(T ), q0(T ). Hence,

E[p0(T )q0(T )BadX(T )|TY = tY ] = 2pq0ET [BadX |TY = tY ]

≤ 2
5
pq0 from claim 1.3

≤ 2
5

ET [q0(T )|TY = tY ]

≤ 2
5

ET [p0(T )q0(T )|TY = tY ]

�

Now, to complete the proof of the lemma (1.2),

P [(X1, Y1) ∈ R] = ET [p1(T )q1(T )]
≥ ET [p1(T )q1(T )(1−Bad(T ))]

≥ ET [(
1
3
p0(T )− 2−εn)(

1
3
q0(T )− 2−εn)(1−Bad(T ))] (from eq 8)

≥ αET [p0(T )q0(T )]− 2−Ω(n)]

≥ αPr[(X0, Y0) ∈ R]− 2−Ω(n)

�

Now, we prove the lemma required in the proof of the theorem.

Lemma 1.5. For any R = X× Y , where X,Y ⊆ 2[n],

(14) µ(B ∩R) ≥ αµ(A ∩R)− 2−δn

for some constants k, δ > 0.

Proof. This lemma follows from the previous lemma (1.2) by just observing that

µ(B ∩R) =
1
4

ET [p1(T )q1(T )]

µ(A ∩R) =
3
4

ET [p0(T )q0(T )]
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We prove just the first equation. The second equation follows along similar lines.

µ(B ∩R) = µ(B)µ(R|B)

=
1
4

∑
TPr[T ]Pr[X ∈ X|T = t, i ∈ X]Pr[Y ∈ Y|T = t, i ∈ Y ]

=
1
4

ET [p1(T )q1(T )]

�

2. Forster’s lower bound

In this section, we present Forster’s lower bound for the Unbounded Error Prob-
abilistic Communication Complexity by showing a lower bound on the sign rank of
the corresponding communication matrix, if it has a low spectral norm. In [6], it
was shown that the the communication complexity (Cf ) of a distributed function
f is closely related to sign rank (say k) (2.1) of the communication matrix as

(15) dlog2 ke ≤ Cf ≤ dlog2 ke+ 1

For a distributed function f : {1, 2, . . . , n}2 → {−1, 1} represented by the matrix
M(f) ∈ {−1, 1}n×n, we define the sign rank of the corresponding matrix.

Definition 2.1. For a matrix M ∈ {−1, 1}n×n, we say that the signrank(M) ≤
k iff there exists A ∈ Rn×n of rank ≤ k such that Mi,j = sign(Ai,j) (where
sign(x) is the usual sign function defined on R). Equivalently, there exists X =
{x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn} ⊆ Rk such that Mi,j = sign(< xi, yj >),
where < a, b > represents the inner product of vectors a and b.

We now present and prove Forster’s theorem [2]

Theorem 2.2. signrank(M) ≥ n
||M || where ||A|| represents the spectral norm of

the matrix A.

Note that this theorem along with theorem 15 implies that for any distributed
function f : {0, 1}m × {0, 1}m → {0, 1}, the communication complexity

Cf ≥ m− log2 ||Mf ||

where Mf represents the corresponding communication matrix. For the sake of
notation, for vectors x ∈ X and y ∈ Y , we refer to the corresponding entry in M
by Mx,y.

Proof. The proof follows in two steps. The first is in establishing a connection
between a relaxation of the Discrepancy(disc(M)) and the spectral norm ||M ||.
The second part of the proof lower bounds disc by using Lemma 2.3, which forms
the crux of the proof. We now state the lemma (proved in the special note by David
Steurer)

Lemma 2.3. For every X ⊆ Rk such that |X| = n, such that all subsets of X with
at most k elements are linearly independent, there exists a linear map A ∈ GL(k)
such that ∑

x∈X

1
||Ax||2

(Ax)(Ax)T =
n

k
Ik
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We first define disc(M).

disc(M) = max
X={x|||x||=1}
Y={y|||y||=1}
|Y |=|X|=n

∑
x∈X,y∈Y

Mx,y < x, y >

This is related to within a constant factor of the earlier definition of discrepancy
by the Groethendieck’s inequality ([1]). Now, we establish the following relation
disc ≤ n||M ||.

(16) ||M || = max
||u||=1,||v||=1

< u,Mv >

We now show that

(17) ||M || = max∑
x ||x||

2=1∑
y ||y||

2=1

Mx,y < x, y >

Clearly, LHS ≤ RHS. We now show the other direction by apply Cauchy-Schwartz
inequality twice.

max∑
x ||x||

2=1∑
y ||y||

2=1

Mx,y < x, y > ≤
∑
i

∑
∑
x ||x||

2=1∑
y ||y||

2=1

Mx,yxiyi

≤
∑
i

||M ||
√

(
∑
x

x2
i )(
∑
y

y2
i )

≤ ||M ||
∑
i

√∑
x

x2
i

√∑
y

y2
i

≤ ||M ||
√∑

i

∑
x

x2
i

√∑
i

∑
y

y2
i

≤ ||M ||
Finally, we proceed to prove the theorem. M has sign rank k, and assume that the
corresponding unit vectors are x ∈ X and y ∈ Y .∑

x,y

Mx,y < x, y > =
∑
x,y

| < x, y > |

≥
∑
x,y

< x, y >2

=
∑
y

Y T (
∑
x

xxT )Y

=
n2

k
from Lemma2.3

Hence n||M || ≥ disc

≥ n2

k

Thus, ||M || ≥ n
k . �
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In particular, this result by Forster also resolved a long-standing conjecture of
[6, 4] in showing that the unbounding error probabilistic communication complexity
of the distributed function given by the Hadamard matrix is linear (≥ n

2 ).
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