
COS595D February 29, 2008

Lecture Notes 4: UOWHF from any One-Way Function

Professor: Boaz Barak Scribe:Mohammad Mahmoody-Ghidary

1 Introduction

Digital signatures are one of the main primitives in cryptography with many applications.
Unfortunately the existence of digital signatures implies P 6= NP and more strongly the
existence of one-way functions (OWF). So with our current knowledge in complexity theory
the best we can do is to construct schemes which are secure based on believable assumptions,
and at best we would like to base the existence of signature schemes on the sole assumption
of the existence of one-way function.

The first suggestion on how to construct signature schemes was in the paper of Diffie
and Hellman [DH76]. The assumption they used for getting signatures was the existence
of trapdoor one-way functions. A family of trapdoor functions has a generation algorithm
which generates (the description of) a function f together with a trapdoor t. Then f can be
computed efficiently, but without knowing t it is hard to invert f on a random image with
more than negligible probability. In order to sign a message using trapdoor permutations,
(roughly speaking) the signature for a message m will be f−1(m) using t (which is the
signing key), and the correctness of the signature can be verified by only knowing how to
compute f (which is the verification key).

Later there were constructions for trapdoor functions based on algebraic assumptions
that RSA trapdoor permutation [RSA78] among them is quite well known. Then Naor
and Yung [NY89] introduced the notion of universal one-way hash functions (UOWHF)
and showed that its existence is enough for having signature schemes, and showed how to
construct UOWHF from any one-way permutation. Finally Rompel [Rom90] showed how
to construct UOWHF from any one-way function. Katz and Koo recently wrote the full
proof of Rompel’s scheme [KK08].

In the next section we see the formal definition of UOWHF and see a simple construction
using RSA assumption (which gives us collision resistence —something stronger than just
UOWHF). Then in Section 3 we will see the construction from one-way permutations and
then finally in Section 4 we see the construction based on any OWF.

2 Universal one-way hash functions

Before defining UOWHF, let us have a look at its twin: collision resistent hash function
(CRHF). A CRHF is a family of compressing functions which is efficiently computable, but
it is hard to find a collision for it.

Definition 2.1. A collision resistant hash function (CRHF) is (a sequence of) families of
functions Hn (for n ∈ N) such that each h ∈ Hn is a compressing function f : {0, 1}n →
{0, 1}n−1 and we have:

4 - 1

• Sampling There is a randomized poly-time algorithm S which S(1n) outputs some
h ∈ Hn.

• Evaluation There is a polynomial time algorithm A such that given (the description
of) h and x ∈ {0, 1}n computes h(x) in poly(n) time.

• Collision Resistance (CR) For any polynomial time algorithm B we have Pr[h(x) =
h(y) | h = S(1n), B(h) = (x, y)] ≤ n−ω(1).

Simon [Sim98] showed that black-box reductions can not construct CRHF from OWF.
But perhaps surprisingly if we relax the requirements a bit then suddenly everything
changes. A UOWHF has a similar but weaker definition compared to that of CRHF (in
the sense that a CRHF is a UOWHF as well). This time the adversary is given one specific
point and she needs to find another point that collides to that point. So, a UOWHF has
the same definition as a CRHF with the difference that the third condition is different:

• Target Collision Resistance (TCR): For any polynomial time algorithm B we
have Pr[h(x) = h(y) | h = S(1n), B(x, h) = y] ≤ n−ω(1) for every x ∈ {0, 1}n.

It is easy to see that once we can compress one bit (for both CRHF and UOWHF), then
we can hash {0, 1}poly(n) to {0, 1}n with composing the function many times, (or even hash
{0, 1}∗ to {0, 1}n with a bit more careful composition).

Sometimes people use another condition for the collision resistance in the definition of
UOWFHF:

• TCR’: For any polynomial time algorithm B we have Prx←R{0,1}n [h(x) = h(y) | h =
S(1n), B(x, h) = y] ≤ n−ω(1).

Note that TCR property implies TCR’, but it is easy to see that if H has property
TCR’, then the following UOWHF has property TCR:

• Sampling: Get h = SH(1n) and z ←R {0, 1}n and output (h, z).

• Evaluation: Given the function (h, z) and input x, output h(x ⊕ z) where ⊕ is the
bitwise exclusive or.

So in the following we might as well use the TCR’ property instead of TCR whenever
it is more convenient.

3 Constructing CRHF based on RSA assuption

In this section we show how to get CRHF assuming the RSA trapdoor permutation is one-
way. The RSA trapdoor permutation is described by a number N = pq where p, q ∈ N
are prime numbers and also e, d where the greatest common divisor of e and ϕ(N) is
(d, ϕ(N)) = 1 and ed = 1 mod ϕ(N). For x ∈ ZN the function is f(x) = xe mod N and
f−1(x) = xd mod N . The assumption is that if we generate (N, e, d) in some random way,
then it is hard to invert f(x) for a random x (where the security parameter is n ≈ log(N)).
Before going over the construction and its security proof note that the RSA function has the
properties that f(uv) = f(u)f(v) and f(1/w) = 1/f(w) (when w 6= 0). The hash function
HRSA based on the RSA assumption is the following:

4 - 2

• Sampling: Generate (N, e, d) for N ≈ 2n for the RSA system which describes a
permutation f : ZN → ZN , and choose a ←R ZN . Let f0(x) = f(x) and f1(x) =
f(ax) = f(a)f(x) for x ∈ Zn. The hash function is described by (f0, f1). Note that
we did not use e and we only needed f(a) rather than a itself. Note also that if
(a,N) = 1 then f0 and f1 are both permutations over ZN .

• Evaluation: Given M = m1 . . .m2n ∈ {0, 1}2n, the hashed value is: h(M) =
fm2n(. . . fm1(1) . . .).

Now we prove the TCR property.

Theorem 3.1. Assuming RSA permutations are one-way, the family of hash functions
HRSA described above is collision resistant (and therefore target collision resistant as well).

Proof. Suppose for the sake of contradiction that the adversary B breaks the CR property
of HRSA. Now we show how to get an adversary E who breaks the security of RSA.
Given (N, e) and f(a) = ae mod N for a random a ∈ ZN , E wants to find a. Note that
f(a) = 0 iff a = 0 and (a,N) 6= 1 iff (f(a), N) 6= 1. So if f(a) = 0, E outputs 0 and if
f(a) 6= 0, (f(a), N) 6= 1 she can decompose N by taking (f(a), N) and find d and compute
a. So we might as well assume that (a,N) = 1.

At this point E samples h ∈ HRSA by using (N, e) and f(a), and feeds h to B.
Let M 6= M ′ be the collision found by B where M = m1 . . .m2n,M

′ = m′1 . . .m
′
2n.

Let i be the largest i such that mi 6= m′i and let x = fmi−1(. . . (fm1(1) . . .) and x′ =
fm′i−1

(. . . (fm′1(1) . . .) (we do not have necessarily x 6= x′). Because f0 and f1 are per-
mutations, so is fm2n(. . . fmi+1(·) . . .) = fm′2n

(. . . fm′i+1
(·) . . .) and because M,M ′ make a

collision we have fmi(x) = fm′i(x
′) which because mi 6= m′i means that f0(x) = f1(x′) and

we get f(x) = f(ax′). So we have f(x) = f(a)f(x′) and so f(a) = f(x)/f(x′) = f(x/x′)
and therefore a = x/x′.

4 Construction based on one-way permutation

In this section we see the construction of UOWHF based on one-way permutations given
in [NY89]. The construction uses (a variant of) a powerful tool proved to be very useful in
cryptography: pairwise independent hash functions PIHF.

Definition 4.1. A PIHF F is a set of functions F = {f | f : A → B} for sets A,B
with the property that: For every b1, b2 ∈ B where a1, a2 ∈ A where a1 6= a2 we have
Prf←RF [f(a1) = b2, f(a2) = b2] = 1

|B|2 .

The definition generalizes naturally to 3-wise independet and n-wise independent hash
functions.

It is easy to see that if we remove some elements from the set A or set B and look at
the restriction of F on the remaining sets, it is still a PIHF. Now we see how to construct
a PIHF F from A = {0, 1}n to B = {0, 1}m where |F| = 22 max(m,n) (and so a member of
F can be described with 2 max(m,n) bits). We only show how to construct F for the case
m = n and for the general case we can first extend the smaller set between A and B to the
size of 2max(m,n) and then remove the extra elements at the end.

4 - 3

We can look at A and B as GF (2n). Now we claim that F = {f(x) = ux + v | u, v ∈
GF (2n)} is a PIHF. The reason is that for any fixed a1, a2, b1, b2 ∈ GF (2n) where a1 6= a2,
the system of equations b1 = ua1 + v, b2 = ua2 + v over variables u, v is nonsingular (i.e.
1a1 − 1a2 6= 0) and therefore has a unique solution.

In order to get h : {0, 1}n → {0, 1}n−1 we can remove the last bit of the image. More
precisely, GF (2n) can be represented with binary vectors of length n such that the addition
is just componentwise exclusive or, and in this representation we remove the last bit to get
the smaller domain {0, 1}n−1. Let Fn−1

n be this specific PIHF mapping {0, 1}n to {0, 1}n−1.
It can be seen that if we restrict u 6= 0 in the constructions F and Fn−1

n above the result is
not a PIHF (because f ∈ F is now always a permutation), but if I be the Fn−1

n restricted
to u 6= 0 it can be seen that we still have the “weakly-pairwise” independence which says
Prf←I [f(a1) = f(a2)] is independent of the pair a1 6= a2 (more precisely it is 1

2n−1 because
removing the last bit is a 2-to1 function). This property holds for any PIHF as well. But
I has the extra property (used below) that for any a1 and f ∈ I, there is a unique a2 6= a1

such that f(a1) = f(a2).
Now we see how to construct a UOWHF H mapping {0, 1}n to {0, 1}n−1 from the one-

way permutation p : {0, 1}n → {0, 1}n and almost-PIHF I mapping {0, 1}n to {0, 1}n−1

described above.

Theorem 4.2. Let p : {0, 1}n → {0, 1}n be a one-way permutation and I be the APIHF
described above, then H = {h | h = f ◦p, f ∈ F} is a UOWHF mapping {0, 1}n to {0, 1}n−1.

Proof. The intuition is that given a fixed x0, for a random f ∈ I, the unique x for which
f(p(x)) = f(p(x′)) is distributed randomly, and therefore p(x) is also distributed at random,
and finding x is like inverting the random point of p(x) which is impossible.

More formally, suppose B is the adversary who finds a collision for fixed x0 for a random
h ←R H with probability at least ε. Then we show how to construct an adversary A who
inverts p(x) for a random x with probability at least ε. The adversary A knows x0 (and
y0 = p(x0)) and has access to B.

Note that I has the weakly-pairwise property and it is also 2-to-1. So if we first choose
a random y 6= y0 and then choose a random f ∈ I conditioned on f(y) = f(y0) we would
sample a uniform f ∈ I.

Given p(x) = y for a random x ∈ {0, 1}n, if y = y0, A can simply output x0. So we
can assume that x 6= x0. Now we will show that given a random y 6= y′ how to sample
f ∈ I conditioned on f(y) = f(y0), and by the above discussion it is as if we are choosing
a random f ∈ I and then choosing y to be the unique point where f(y) = f(y0). So, if we
feed x0, h = f ◦ g to B it finds the unique x where h(x) = h(x0) with probability at least ε
which is what A wants: f(x) = y.

Now we only need to show how to sample a random f ∈ I conditioned on f(y) = f(y0)
for y 6= y0. We have to choose u 6= 0 and v such that uy + v and uy0 + v differ only in
their last bit (in the representation explained above) because they can not be equal on all
the bits (otherwise uy = uy0 and so u = 0). So, if z ∈ GF (2n) be the element which has
representation 00 · · · 001, we need to have (uy + v)− (uy0 + v) = z (note that + and − are
the same in GF (2n)). So it means uy − uy0 = z, or equivalently: u = z/(y − y0). So the
set of f ∈ I conditioned on f(y) = f(y0) can be described by u = z/(y − y0)

and an arbitrary v, and we can choose v at random.

4 - 4

5 Construction based on one-way function

Let f be a function operating on the domain Df . For every x ∈ Df we define Sibf (x) =
{y | f(y) = f(x)}. The construction from OWF has the following steps:

1. Getting weak UOWHF: Starting from OWF f we get a family of weak UOWHF H
and will define Hardh(x) ⊂ Sib(x) such that:

• For every PPT algorithm A and x ∈ DH we have Prh←RH [A(h, x) ∈ Hardh(x)] =
neg.

• Ex,h[|Hardh(x)|
|Sibh(x)|] ≥ 1

poly .

2. Amplifying hard sets: Using UOWHF from the previous step, we get H such that
for every x ∈ DH , with probability 1 − neg over h ←R H we have that the set
Easyh(x) = Sibh(x)\Hardh(x) has negligible relative size: |Easyh(x)|

|Hardh(x)| = neg.

3. Making all siblings hard: Then we get UOWHF h such that for every x ∈ DH , with
probability 1− neg over h←R H we have Hardh(x) = Sibh(x).

4. Shrinking the length: We change H such that its output has length less than its input.

The main step is the first one and the others are rather straightforward.

5.1 Getting weak UOWHF

Let f : {0, 1}n → {0, 1}n be a OWF. We can divide its domain into sets on which f is almost
regular: For 0 ≤ i ≤ n let Ci = {x | 2i ≤ |Sibf (x)| < 2i+1}. By pigeonhole principle, (since
if Cn 6= ∅ the function is not one-way) there is k such that |Ck| ≥ 2n/n. By throwing away
some elements from Ck we can get a set C which the restriction of f on C is 2k regular
and |C| ≥ 2n

2n . We assume that n is a power of two, and so if |f(C)| = q then 2kq ≥ 2n

2n
and we can throw away more elements from C to keep 2k regularity of f(C) and have
|C| = 2n

2n = 2n−log(2n) and |f(C)| = 2n−k−log(2n) exactly. C will be such set in the following.
For now, we assume that we know the value of k (the regularity of f over C), and

we will take care of this issue later. Our weak UOWHF of this step uses two PIHF’s:
Pi = {hi | hi : {0, 1}n−k−log(2n) → {0, 1}n}, Po = {ho | ho : {0, 1}n → {0, 1}n−k−∆} where
∆ = 10 log(n).1 The weak UOWHF family H is defined as H = {h = ho ◦ f ◦ hi | ho ∈
Po, hi ∈ Pi}.

For any x ∈ DH = {0, 1}n−k−log(2n) and h = ho ◦ f ◦ hi ∈ H, if hi(x)ıC then we define
Hardh(x) = {y | h(x) = h(y), hi(y) ∈ C, f(hi(y)) 6= f(hi(x))}, and if hi(x) 6∈ C we define
Hardh(x) = ∅. We first prove that it is in fact hard for every x ∈ DH to find a member
of Hardh(x) for a random h and then show that on average there are noticeable fraction of
them among Sibh(x).

1Note that we can assume w.l.o.g that |f(C)| = 2n−k−log(2n) = nω(1), because otherwise f cannot be
one-way: Given y = f(x) for x←R C if we output a random x′ ← C we succeed with probability 1/|f(C)|.

4 - 5

Lemma 5.1. For every x ∈ DH and every PPT algorithm A we have Prh←RH [A(x, h) ∈
Hardh(x)] = neg.

Proof. The proof will be by reducing finding hard siblings to inverting f . Let x0 and A
be such that Prh←RH [A(x0, h) ∈ Hardh(x)] ≥ ε = 1/poly. We assume that we have oracle
access to A and it is deterministic. That is w.l.o.g., because with probability 1/poly we can
fix a “good” randomness for A such that it still has the property above (with a bit weaker
ε).

We show that the algorithm B below inverts f on a random y ←R f(C) with probability
1/poly, and since |C|2n = 1

2n ≥
1

poly it is a contradiction.

Algorithm B: Given y ←R C choose hi ←R Pi at random. Then let y0 = f(hi(x0)) and
if y0 = y output hi(x0). Otherwise choose ho ←R Po | ho(y) = ho(y0) at random.2 Let
h = ho ◦ f ◦ hi and run A to get x = A(x0, h), and output hi(x).

Analysis of B: We call hi ∈ Pi good if Prho←RPo [A(x0, ho ◦ f ◦hi) ∈ Hardh(x)] ≥ ε/2. By
an average argument we have Prhi←RPi

[hi is good] ≥ ε/2. So in the following we assume
that hi is good (which in particular implies hi(x0) ∈ C). We hope to get back x = A(x0, h)
such that f(hi(x)) = y.

In order to analyze B, it is helpful to look at the following bipartite graph G =
(VL, VR, E) where VL = f(C)\{y0}, and VR = Po. We put an edge between z ∈ VL
and ho ∈ VL if ho(z) = ho(y0). What the algorithm B does is first choosing a random
y ∈ f(C), y 6= y0, and then choosing a random neighbor of y: ho ←R N(y). Then suppose
x ∈ Hard(x0) is what A returns. If f(hi(x)) = y we color the edge (y, ho) green (which
means we are happy). We know that at least ε/2 fraction of vertices in VR have a green
edge. Our hope is to choose a green edge when we sample a random neighbor of y (for a
random y), because then we will get x such that f(hi(x)) = y and so hi(x) ∈ f−1(y). So all
we have to do is to show that by choosing a random y ∈ VL and a random neighbor of y we
choose a green edge with probability 1/poly. But the graph G has the following properties:

• G is left regular. That is because of pairwise independence of Po, for every z ∈ VL we
have d = deg(z) = |VR|

2n−k−10 log(n) . So by choosing y ←R VL and choosing ho ←R N(y)
we are choosing a random edge (y, ho)←R E.

• At least ε
n9 fraction of E are green. That is because |E| = d|VL| = |VR|

2n−k−10 log(n) (|f(C)|−
1) < |VR|n

10

2n = |VR|n9

2 , and there are at least ε
2 |VR| green edges. So, at least ε

n9 fraction
of the edges are green.

Note that if A gives x such that the edge (f(hi(x)), ho) is green, then B inverts f
successfully. Therefore the algorithm B inverts f on y ←R f(C) with probability at least
(ε2)(ε

n9) ≥ 1
poly .

The following lemma shows that the hard siblings have density at least 1/poly on av-
erage. In the proof of the next lemma we assume that the families of hash functions Pi
and Po are three-wise independent, but a more careful analysis gives weaker yet sufficient
bounds using pairwise independence.

2The construction for PIHF given in Section 4 enables us to sample ho with this condition.

4 - 6

Lemma 5.2. For every x ∈ DH with probability at least 1
3n over h ←R H we have

|Hardh(x)|
|Sibh(x)| ≥ Ω(1

n2). Therefore for every x ∈ DH we have Eh[|Hardh(x)|
|Sibh(x)|] ≥ Ω(1

n3) > 1
n4

(for large enough n).

Proof. With probability 1
2n we have hi(x) ∈ C. Let fix the value of hi(x) ∈ C and even

ho(f(hi(x)) in the following and all probabilities and expectations will be conditioned on
the fixed values of hi(x), h(x). Note that hi and ho are still pairwise independent for
other (non-fixed) values. We first prove E[|Sibh(x)|] ≤ n9. For every u ∈ DH define the
boolean random variable Yu = 1 iff h(u) = h(x). For u 6= x we have E[Yu] = Pr[Yu = 1] =
Pr[f(hi(u)) = f(hi(x))]+Pr[h(u) = h(x) | f(hi(u)) 6= f(hi(x))]. Because for every z ∈ f(C)
(including f(hi(x))), we have |f−1(x)| ≤ 2k+1. Therefore by pairwise independence of
Pi we get Pr[f(hi(u)) = f(hi(x))] ≤ 1

2n−k−1 , and by pairwise independence of Po, we
get Pr[h(u) = h(x) | f(hi(u)) 6= f(hi(x))] = 1

2n−k−10 log n . Note that although Yx = 1
is fixed, Yu’s for u 6= x are still pairwise independent and so by Lemma A.1 we have
Eh[|Sibh(x)|] = 1 +

∑
u6=x E[Yu] < 1 + 2n−k−log(2n)(1

2n−k−1 + 1
2n−k−10 log n) = 1 + 1

n + n10

2n < n9

(for large enough n). So using Markov’s inequality, we have Pr[|Sibh(x)| ≤ n10] ≥ 1− 1
n .

Now we show that Pr[|Hardh(x)| ≥ n8

16 − 1] ≥ 1− 1
n , and then by using union bound we

get that (over all randomness of hi and ho) with probability at least (1
2n)(1− 1

n −
1
n) > 1

3n

(for large n) we have |Hardh(x)|
|Sibh(x)| ≥ Ω(1

n2) which proves the lemma.

Let X = f−1(f(hi(x))) ∩ C which has size |X| = 2k < |C|
2 and so we have |C\X|2n ≥ 1

4n .
For any u 6= x we have u ∈ Hard(x) iff hi(u) ∈ C\X and h(u) = h(x) . Define the
boolean random variable Zu = 1 iff u ∈ Hard(x). For u 6= x we have E[Zu] = Prhi

[hi(u) ∈
C\X] Prho [ho(f(hi(u))) = h(x) | hi] ≥ (1

4n)(1
2n−k−10 log n). Note that although Zx = 0 is

fixed, Zu’s for u 6= x are still pairwise independent and
∑

u6=x E[Zu] ≥ (2n−k−log(2n) −
1)(1

(4n)(2n−k−10 log n)
). If we pretend that Zx is also random (in a similar way) we have∑

u E[Zu] ≥ n10

(4n)(2n) . We do this artificially and then subtract one from the total amount.

So by Lemma A.1 we have Pr[|Hardh(x)| ≥ n8

16 − 1] ≥ 1− 32
n8 > 1− 1

n (for large enough n).

5.2 Amplifying the hard sets

By H×` we mean the family of hash functions which is made by ` independent copies of H
of previous section acting on ` chunks. So H×` = {(h1, . . . , h`) | hi ∈ H} where H is the
hash function of the previous section. Let x = x1 . . . x`, y = y1 . . . y` ∈ DH×` . We define
y ∈ Hardh(x) if h(x) = h(y) and ∃i yi ∈ Hard(xi) where the latter is based on the definition
of hardness for a single h. The important point is that it is still computationally hard to
find a member of Hardh(x) given x (for ` = poly(n)). That is because if the adversary Eve
can compute a member of Hardh(x) with probability at least ε, then for some 1 ≤ i ≤ ` she
can compute a member of Hard(xi) with probability at least ε/` (or if we want to stick to
the uniform setting, one can guess some i and will succeed to find a hard sibling for h ∈ H
with probability ε/`). Let α = Eh∈H×` [log |Sibh(x)|]. Note that α is not dependent on the
choice of x and we have log(n) ≤ α ≤ n.3 The following lemma shows that we can amplify

3The first inequality is because α = E[log |Sib(x)|] ≥ log(E[|Sib(x)|]) > log(E[|Hard(x)|]) > log(Ω(n7)) >
log(n).

4 - 7

the hard sets exponentially by taking ` = poly(n) large enough.

Lemma 5.3. Let ` = n20, ε = `−1/3, and α` = m, then for every x ∈ DH×` with probability
at least 1 − O(2−`

1/3
) over h ←R H

×` we have |Sib(x)| = 2m(1±ε) ≤ 2m+n`ε < 2m+n15
and

|Easyh(x)|
|Sibh(x)| ≤ 2−Ω(`

n4) < 2−Ω(n16). Therefore |Easyh(x)| ≤ 2m+n15−Ω(n16) < 2m−100`3/4
.

Proof. Note that x = x1 . . . x` is a sibling of y = y1 . . . y` iff for all i, xi is a sibling of yi,
and in this case, y is a hard sibling of x iff for at least one i, yi is a hard sibling of xi.

If αi = log |Sib(xi)|, we have E[αi] = α, so by Chernoff bound E[log |Sibh(x)|] ∈ `α(1± ε)
with probability at least 1− 2e−2`ε2 .

For xi ∈ DH , let θi = |Hardh(xi)|
|Sibh(xi)| . Note that Eh←RH [θi] = θ is not dependent on xi and

we have θ > 1
n4 . By Chernoff bound we have

∑
i θi = `θ(1± ε) > Ω(`

n4) with probability at

least 1− 2e−2`ε2 . In this case we have |Easyh(x)|
|Sibh(x)| =

∏
i(1− θi) ≤

∏
i e
−θi = e−

∑
θi < 2Ω(`

n4).

So by union bound, with probability at least 1−O(e−2`ε2) > 1−O(2−`
1/3

) we get both
of the inequalities above.

5.3 Making all siblings hard

Note that our current hash function H maps domain DH of size 2w for w = `(n−k−log(2n))
to range RH of size 2w−10 logn+log(2n). Also note that by the definition of hardness, it is
computationally hard to find a hard sibling of x. Now we show how to make all the siblings
hard by increasing the output length. We will shrink the output in the next step.

Let P be a family of 3-wise independent hash functions mapping length w to m−50`3/4

(in this section we only use its pairwise independence). IfH is the hash family of the previous
section and H̄ = {h(x) = h1(x)h2(x) | h1 ∈ H,h2 ∈ P} be a new hash family (which
increases the length). For x, y ∈ DH̄ we call y a hard sibling for x under h = (h1, h2) ∈ H̄
if h(x) = h(y) and y is a hard sibling for x under h1. With probability at least 1 − 2−n

over h1 ←R H there are at most 2m−100`3/4
easy siblings for x under h1. Now if this is the

case, each of the easy siblings will map to the same point as x does under h2 ←R P with
probability at most 2−m+50`−3/4

. Therefore using union bound, with probability at least
1 − 2−50`3/4

over h2 ←R P none of them will map to the same point as x. So we get that
with probability at least (1 − 2−n)(1 − 250`3/4

) > (1 − O(2−n)) over h ←R H̄, all of the
siblings of x are hard.

5.4 Shrinking the length

Note that our hash function, before making all the siblings hard, had this property that for
every x, with probability at least 1−O(2−`

1/3
) we had |Sib(x)| > 2m(1−ε) > 2m−`

3/4
. If this

is the case for x, by changing H to H̄, the expected number of siblings remains at least
249`3/4

. Again in the following, we use the name H for H̄. By Lemma A.1, with probability
at least 1 − 2−40`3/4

over h ←R H̄, we have |Sib(x)| > 240`3/4
. We call such x a good one.

So, the expected fraction of good x’s among all x ∈ DH is at least 1− 2−40`3/4
, and by an

average argument, with probability at least 1 − 2−6`3/4, we have that at least 1 − 2−6`3/4

fraction of x’s are good. When this is the case, the size of the image of the hash function

4 - 8

|h(DH)| is at most 2 |DH |
26`3/4 , because the good x’ can contribute at most |DH |

240`3/4 , and the

remaining x’s are at most |DH |
26`3/4 many.

Therefore with probability at least 1−O(2−`
1/3

) > 1−2−n we have |h(DH)| < |DH |
22n . Note

that the input length n′ = log |DH | is bigger than n now. If we take P to be a new family
of pairwise independent hash functions mapping the output of H to {0, 1}n′−n, and take
H̄ = {f ◦h | f ∈ P, h ∈ H}, then H̄ is shrinking n′ bits to n′−n bits. But more importantly,
for every x, with high probability H̄ does not add any sibling to Sib(x) and all of them
remain hard. Namely, with probability at least 1− 2−n, we have |h(DH)| < |DH |

22n = 2n
′−2n,

and by union bound, with probability at least 1−2−n, there is no new point in the image of
H colliding with the image of x, under f ←R P . Therefore, for any single x, with probability
at least 1−O(2−n), all of its siblings are hard.

5.5 Concatenation

Note that we did not know neither the value of k nor the value of m. Assuming that we
knew k, and we knew m (up to n1/100 multiplitcative approximation) we showed how to get
a shrinking hash function family. If we try all the constructions by using all 0 ≤ k ≤ n and
all values of m = ni/100 for 1 ≤ i ≤ 10000, all of them are shrinking (so the concatenation
is also shrinking) and one of them is universal one-way. It is easy to see that the the latter
property makes the concatenation also universal one-way.

A Some useful facts

Lemma A.1. Let X1, . . . , XN be pairwise independent boolean random variables such that
E[Xi] = Pr[Xi = 1] = p, and X =

∑
iXi, and so µ = E[X] = Np. Then Pr[X ≥ µ/2] ≥

1− 4/µ.

Proof. Using Chebyshev’s inequality we have:

Pr[X <
µ

2
] ≤ Pr[|X − µ| > µ

2
] <

Var[X]
(µ2)2

=
∑

i Var[Xi]
µ2

=
4Np(1− p)

µ2
<

4Np
µ2

=
4µ
µ2

=
4
µ

References

[DH76] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, Nov. 1976.

[KK08] J. Katz and C.-Y. Koo. On Constructing Universal One-Way Hash Functions
from Arbitrary One-Way Functions. Journal of Cryptology, 2008. To appear.
Preliminary version available on http://www.cs.umd.edu/~jkatz/.

[NY89] M. Naor and M. Yung. Universal One-Way Hash Functions and their Crypto-
graphic Applications. In Proc. 21st STOC, pages 33–43. ACM, 1989.

4 - 9

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Dig-
ital Signatures and Public-Key Cryptosystems. Communications of the ACM,
21(2):120–126, Feb 1978.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
STOC’90 (Baltimore, Maryland, May 14–16, 1990), pages 387–394, New York,
1990. ACM SIGACT, ACM Press.

[Sim98] D. R. Simon. Finding Collisions on a One-Way Street: Can Secure Hash Functions
Be Based on General Assumptions? In EUROCRYPT, pages 334–345, 1998.

4 - 10

