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In this lecture, we study fast matrix multiplication using techniques from the representation the-
ory of non-Abelian groups. Secondly, we will see two explicit constructions of dimension expanders,
a sort of generalization of expander graphs.

1 Fast Matrix Multiplication

We let ω denote the least exponent such that two n× n matrices can be multiplied with O(nω+ε)
arithmetic operations for every ε > 0. It is clear that ω ≥ 2, while Strassen showed that ω is strictly
less than 3. Today it is widely believed that ω = 2, although the best upper bound is roughly 2.34
due Coppersmith and Winograd. We will see a somewhat worse upper bound based on a group
theoretic approach due to Cohen and Umans.

1.1 Strassen’s main insight

Strassen showed that finding asymptotically fast matrix multiplication algorithms reduces to a
finite problem. Namely, how many multiplications are necessary in order to multiply a k×k matrix
for some constant k?

Lemma 1 (Strassen ’69) If there exists a k ≥ 2 such that there is an algorithm which multi-
plies k × k matrices using kω multiplications, then we can multiply n × n matrices using O(nω)
multiplications.

Proof. The proof idea is to use recursion. Given two n × n matrices, we split each of them into
k × k blocks. Now, we multiply the two matrices using the kω algorithm treating each block as a
number. Whenever we have to multiply two blocks, we invoke a recursive call. Hence, on every
fixed input size we invoke kω recursive calls.

Assuming n = kl for some positive integer l, we can compute the runtime of this algorithm
using the recurrence equation

T (kl) = kωT (kl−1) + f(k)k2l = O(klω) = O(nω). �

Fact 2 (Strassen ’69) Two 2× 2 matrices can be multiplied using 2log 7 = 7 multiplications.

Using the previous fact, this gives us an nlog 7 matrix multiplication algorithm where log 7 ≈
2.81 < 3.
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1.2 Bilinear Maps and Tensors

Before we proceed, we will mention a useful characterizations of the matrix multiplication exponent
ω. The rank of a bilinear map φ : U × V →W is the least r such that

φ(u, v) =
r∑
i=1

fi(u)gi(v)wi, (1)

where fi (and gi) are linear forms over U (and V ), and wi ∈W .
Matrix multiplication is a bilinear map φ(A,B) = AB over the vector space Rk×k. Suppose the

rank of φ is at most r for some k. Then, we can express n× n matrix multiplication for n = ki+1

using (1) as AB =
∑r

i=1 Fi(A)Gi(B)Mi, where Mi is k×k and Fi(A) is a k×k block decomposition
of ki × ki matrices (likewise Gi(B)). Notice to compute AB we need precisely r multiplications of
the form Fi(A)Gi(A). Hence, this gives rises to the recursive algorithm of Lemma 1 and we obtain
the following theorem.

Theorem 1 (Strassen) If the rank of k × k matrix multiplication is at most r for some k > 1,
then ω ≤ logn r.

Often it is useful to think of bilinear maps as tensors. Every bilinear map φ : U × V → W
corresponds uniquely to a tensor t ∈ U∗⊗V ∗⊗W . This tensor is called the structural tensor of φ.
In the case of n× n matrix multiplication we denote the structural tensor by 〈n〉.

1.3 The Group Representation Approach

The idea behind this approach is that matrix multiplication can be reduced to multiplication in
the group algebra of suitable non-Abelian groups. The group algebra of a group G denoted C[G]
is the set of formal sums

∑
g∈G cgg with the cyclic convolution as product between such sums.

The group algebra is isomorphic to Cd1×d1 × · · · × Cdk×dk where di denotes the dimension of the
i-th irreducible group representation ρi. The isomorphism is given by

∑
cgg 7→

⊕
i

∑
g cgρi(g).

In particular, we can multiply two elements in the group algebra by multiplying k matrices of
dimension d1 × d1, . . . , dk × dk. The cost for this operation is

∑
i d
ω
i . The specific criterion that G

needs to satisfy is given in the next theorem.

Theorem 2 (Cohn, Umans ’03) Let G be a group of size nα for some constant α with subsets
S, T , U of cardinality n such that for all s1, s2 ∈ S, t1, t2 ∈ T and u1, u2 ∈ U ,

s1s
−1
2 t1t

−1
2 u1u

−1
2 = 1⇐⇒ s1s

−1
2 = t1t

−1
2 = u1u

−1
2 = 1. (2)

Then,
nω ≤

∑
i

dωi .

where d1, . . . , dk are the dimensions of the irreducible representations of G.

It can be shown that if a group satisfies the assumption of the theorem, then α is between 2
and 3. Further, any Abelian group has α = 3.
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Proof. Let |S| = k and suppose A,B are k × k matrices. Consider the product ∑
s∈S,t∈T

Asts
−1t

 ∑
t′∈T,u∈U

Bt′ut
′−1u


in the group algebra. By (2), we have

(s−1t)(t′−1u) = s′−1u′

if and only if s = s′, t = t′ and u = u′. Hence, the coefficient of s−1u in the product is∑
t∈T

AstBtu = (AB)su.

This means we can multiply two n× n matrices at the cost of multiplication in the group algebra
of G. By our previous discussion, this shows nω ≤

∑
i d
ω
i . �

The following corollary will be helpful in applying the theorem later.

Corollary 3 Under the assumptions of the previous theorem, if max di = |G|
1
γ and 2 ≤ α < γ,

then ω ≤ α γ−2
γ−α .

Proof.

nω ≤
∑
i

d2
i · dω−2

i ≤ (max di)ω−2
∑
i

d2
i = n

α
γ

(ω−2)
nα.

Hence,
ω ≤ α

γ
(ω − 2) + α.

�

It has been conjectured that using this approach one can show ω = 2. We will next see an
example of a group which achieves ω < 3 even though the exact constant will be worse than in
Strassen’s algorithm. However, Cohn, Kleinberg, Szegedy and Umans ’05 gave an example of a
group that achieves ω < 2.41.

1.4 Example for ω < 3

For two groups G,H we define the semi-direct product GoH to be the group induced by the group
operation (g, h)× (g′, h′) = (g′ ·h′(g), h ·h′) where g, g′ ∈ G and h, h′ ∈ H. Here we associated with
every element h ∈ H and automorphism on the group G.

To make this concrete, let A = Z17, the Abelian group of integers modulo 17 and let G = (A3)2.
We think of elements in G as rectangular arrays, e.g., 2 8 6

3 0 1 . Let H = S2 = {id, f}, the
symmetry group of two elements. Here, we think of f as an operation that flips the rows of an
element in G, e.g, f

(
2 8 6
3 0 1

)
= 3 0 1

2 8 6 .
Now, define three sets of S, T, U ⊆ GoH as follows:

S =
{(

g1 0 0
0 g2 0 , h

)
| g1, g2 ∈ G, h ∈ H

}
,

T =
{(

0 g1 0
0 0 g2

, h
)
| g1, g2 ∈ G, h ∈ H

}
,

U =
{(

0 0 g1
g2 0 0 , h

)
| g1, g2 ∈ G, h ∈ H

}
,
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where neither g1 nor g2 may be zero. By case analysis, we can verify that these sets satisfy the
requirement (2).

Also, we have n = |S| = |T | = |U | = 2(|A|−1)2. On the other hand, |G| = 2|A|6. Hence, α < 3.
On the other hand, maxi di = 2. Computing γ and applying Corollary 3, this leads to the bound
ω < 2.91.

2 Dimension Expanders

We now come to our second application of group representation theory.

Definition 1 A set of matrices A1, . . . , Ad ∈ Fn×n is called an ε-dimension expander if for every
subspace V ⊆ Fn of dimension dim(V ) < n

2 , we have

dim{V +A1V + · · ·+AdV } ≥ (1 + ε) dimV.

Dimension expanders can be thought of as a stronger notion than expander graphs. To see this
take F = F2 (the binary field) and consider the graph on the set of vertices Fn2 with edges to
A0v,A1v, . . . , Adv from every vertex v. Fix some k-dimensional subspace V which we think of as a
set of vertices in this graph of size 2k. Then, we have the following different guarantees for expander
graphs and dimension expanders:

|Γ(v)| ≥ (1 + ε)2k (Expander Graphs)

|span(Γ(v))| ≥ 2k(1+ε) (Dimension Expanders)

Random matrices give us good dimension expanders. We will demonstrate this argument over F2.

Lemma 4 Let A1, . . . , Ad be n× n matrices over F2 with i.i.d. 0/1 entries. Then, A1, . . . Ad is a
1.1-dimension expander for d ≥ 10.

Proof. Fix subspaces V of dimension k and U of dimension 1.1k < n/2. We have

Pr
Ai

(∀i : AiV ⊆ U) ≤ 2−nkd/2.

Since there are 2nk · 21.1nk = 22.1nk choices for U and V , the union bound finishes the proof. �

One original motivation to study dimension expanders came from the problem of explicitly con-
structing rigid matrices. The idea was that perhaps one could show (1) sparse matrices B0, . . . , Bd
cannot be dimension expanders in the sense that there is a subspace V of dimension n/10 such
that dim{B0V + · · · + BdV } ≤ (1 + o(1))n/10, and (2) give an explicit construction of dimension
expanders A0, . . . , Ad.

If these two statements were true, one would get rigid matrices as follows. Assuming (1), we
cannot have that  A0

...
Ad

 =
(

low
rank

)
+
(

sparse
)
,

since neither term of the RHS would expand the dimension of subspace.
Unfortunately, this conjecture is false. There are now constructions of sparse dimension ex-

panders.
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2.1 Over the Complex Numbers

Lubotzky and Zelmanov give a construction of dimension expanders over the complex numbers
based on the image of irreducible group representations on a generating set.

Theorem 3 (Lubotzky, Zelmanov) Let G be a finite group, and let S denote a generating set
of G so that λ(C(G,S)) ≤ 1−ε. Here, C(G,S) denotes the Cayley graph and λ is its second largest
eigenvalue. Further let ρ : G→ Un denote an irreducible representation of G. Then, {ρ(s) | s ∈ S}
is an ε

100|S| -dimension expander over Cn.

Proof of Theorem 3

Fix G and S. For every representation ρ we let Aρ = 1
|S|
∑

s∈S ρ(s). Notice, AREG is just the
normalized adjacency matrix of C(G,S). Every eigenvalue of Aρ is also an eigenvalue of AREG and
also every eigenvalue of AREG is an eigenvalue of Aρ for some irreducible representation ρ. Indeed,
if ρ = ρ1 ⊕ ρ2, then every eigenvalue of ρ is either also an eigenvalue of ρ1 or ρ2. More precisely,
every eigenvector v of ρ1 with corresponding eigenvalue λ extends to an eigenvector of ρ as (v, 0)
with the same eigenvalue. Since

λ(G,S) = max
06=v⊥1

〈v,AREG〉
〈v, v∗〉

=
1
|S|
∑
s

〈v,REG(s)v〉
〈v, v∗〉

,

we have the following fact.

Fact 5 If λ(C(G,S)) ≤ 1 − ε, then for every vector v there exists an element s ∈ S such that
‖v − REG(s)v‖2 ≥ ε′

|S|‖v‖
2 for some ε′ > 0. Here, REG denotes the regular representation over

some complex Hilbert space H and v ∈ H.

So, let us consider the following constant (called Kazhdan constant)

K(G,S) = max
06=v⊥1

max
s∈S

‖REG(s)v − v‖2

‖v‖2

= min
ρ

min
v 6=0

max
s∈S

‖ρ(s)v − v‖2

‖v‖2
,

where the minimum in the second line is taken over all vectors v that are not fixed vectors of ρ.
We will apply Fact 5 to the adjoint representation adj ρ defined as

adj ρ(γ)A = ρ(γ)Aρ(γ−1).

where A ∈ Cn×n. We think of adj ρ as a representation over the Hilbert space Cn×n where we have
the inner product 〈A,B〉 = tr(AB∗). We remark that adj ρ is invariant on the n2 − 1 dimensional
subspace {A | tr(A) = 0}. If ρ be an irreducible representation. It turns out, adj ρ has no fixed
nonzero vector. To see this, suppose adj ρ(g)A = A. Then A = ρ(g)Aρ(g−1). This means that A is
from the invariant subspace of adj ρ and hence has tr(A) = 0. But we assumed ρ was irreducible.
Therefore, by Schur’s Lemma, A is either the identity matrix or the zero matrix. But, the identity
matrix does not have trace zero. Hence, A must be the zero matrix.
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Now, fix a subspace V ⊆ Cn of dimension k < n/2 and let P denote the linear projection onto
V . Consider the matrix

A = P − k

n
I.

We have tr(A) = tr(P ) − k
ntrI = 0. By the assumption of our theorem and Fact 5, we have that

there exists an s such that
‖adj ρ(γ)A−A‖2 ≥ ε‖A‖2,

where

‖A‖2 = tr
(

(P − k

n
I)(P − k

n
I)∗
)

= tr(P 2)− k

n2
trI = k − k2

n
≥ k/2.

On the other hand,

adj ρ(γ)A = ρ(γ)Pρ(γ−1)− k

n
I = P ′ − trP ′

n
I,

where P ′ = ρ(γ)Pρ(γ−1) is the projection onto the subspace V ′ = ρ(γ)V .
Hence,

εk/2 ≤ ‖adj ρ(γ)A−A‖2 = ‖P ′ − P‖2,

and the following lemma finishes the proof.

Lemma 6 If P, P ′ are projection matrices of k-dimensional subspaces V and V ′, respectively, such
that ‖P − P ′‖2 ≥ εk, then dim(V + V ′) ≥ (1 + ε′)k for ε′ > 0.

Proof.

‖P − P ′‖2 = 〈P ′ − P, P ′ − P 〉
= 〈P ′, P ′〉+ 〈P, P 〉 − 〈P, P ′〉 − 〈P ′, P 〉
= 2k − 2Re(trPP ′).

We claim that Re(trPP ′) ≥ 4k−3 dim(V +V ′). Notice, the operator PP ′ is the identity on V ∩V ′
(its trace being dim(V ∩ V ′)), and it is zero on (V + V ′)⊥. Also, the trace is at least −1 on
(V + V ′)\(V ∩ V ′). Hence,

Re(tr(PP ′)) = 2 dim(V ∩ V ′)− dim(V + V ′) = 4k − 3 dim(V + V ′),

using the fact that

dim(V ∩ V ′) = dim(V ) + dim(V ′)− dim(V + V ′) = 2k − dim(V + V ′). �

2.2 Over Finite Fields

Let F denote a finite field and consider the vector space Fn for some integer n = 2m. For an index
j ∈ {0, . . . , n− 1}, we define the cyclic right shift Πj by putting

Πj(v1, v2, . . . , vn) = (v1−j , v2−j , . . . , vn−j)

where we identify v0, v−1, . . . , v−j+1 with vn, vn−1, . . . , vn−j+1 as usual.
We also define the projections PL(v′, v′′) = (v′′, 0) and PR(v′, v′′) = (0, v′) where v′, v′′ denote

vectors of length m each.
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Theorem 4 (Dvir, Shpilka) Let J ⊆ {1, . . . ,m} of order |J | = O(logm) such that the Cayley
graph of Zm with respect to J is an expander, i.e., for every set S ∈ Zm of size |S| < m/2 we have

|{s+ j mod m : s ∈ S, j ∈ J}| ≥ 1.1|S|.

Then, the family {Πj | j ∈ J} ∪ {PL, PR} is an ε-dimension expander for some positive constant ε.

We remark that a construction of dimension expanders over finite fields for a constant number of
matrices is currently not known.

Proof. For a vector v we define the degree of v, denoted deg(v), to be the largest coordinate i such
that vi 6= 0. For a subspace V , we let DV = {deg(v) | v ∈ V }. Clearly, dim(V ) = |DV |, since
vectors with distinct degrees are linearly independent.

Now, suppose V is a subspace of dimension k < n/10. We split the set of degrees into a left
side DL = DV ∩ [m] and a right side DR = DV ∩ [m+ 1, 2m].

The set DR\(DL + m) contains all the new distinct degrees that we get when projecting the
left side into the right side using PL. Likewise, DL\(DR −m) counts the new degrees we get from
applying PR. If either of these sets is of size εk, we are done. So, suppose both sets are smaller
than εk.

Consider the set DL+J . Since both DL and J are subsets of [m] we have deg(Πj(v)) = deg(v)+j
for every v ∈ V . Hence, the set of DL+J is contained in the set of degrees of the subspace

∑
j Πj(V ).

To show that we get many new distinct degrees in this set, consider R = DL + J mod m. This
is the neighborhood of DL in the Cayley graph. From our previous discussion, it follows that
DL ∪ (DR −m) is less than (1 + ε)k. On the other hand |R| > 1.1|DL|. Hence, for small enough ε,
we have that |R|\(DL ∪ (DR −m))| > ε′k for some positive constant ε′. �
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