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The first two sections are based on Oded Regev’s lecture notes, and the third one on his paper “New Lattice
Based Cryptographic Constructions ” (JACM 2004, preliminary version STOC 2003) and some personal
communication with him.

1 Dual Lattices and Fourier Transform

Dual lattice If L is a lattice then L∗ = {u : ∀v ∈ L〈u,v〉 ∈ Z}. If B is a basis for L then (B−1)T is a basis
for L∗. Indeed, for any b ∈ Zn, (B−1)Tb ∈ L∗ since for any a ∈ Zn,(

(B−1)Tb
)T
Ba = bTB−1Ba = 〈a,b〉 ∈ Z

Similarly it can be shown that any vector in L∗ can be obtained by integer combinations of the columns
of (B−1)T . As a corollary we obtain that det(L∗) = 1/det(L) and (L∗)∗ = L.

Fourier transform Consider the interval [0, λ] and suppose that we identify the point λ with 0 (i.e., think
of it as a Torus and work modulo λ). Another way to think about this is as the basic cell of the lattice
λZ, whose dual is the lattice (1/λ)Z. A periodic function on this torus has to period length of the form
λ/n for an integer n. Thus, the Fourier transform of a function on this torus involves representing it
as a sum of functions of the form x 7→ e−2πinx/λ.

More generally, the Fourier transform of a function f on P(L) represents f as the sum of functions of
the form x 7→ e2πi〈x,y〉 where y is an element in L∗.

That is, we have the following theorem:

Theorem 1.1. Let f : P(B)→ R be a nice (continuous, differentiable, integrable etc..) function. Then
for every x ∈ P(B),

f(x) =
∑
y∈L∗

f̂(y)e2πi〈x,y〉 (1)

where
f̂(y) =

1
det(L)

∫
P(B)

f(x)e−2πi〈x,y〉dx

More generally, if f is an L-periodic function (i.e., f(x) = f(x + z) for every x ∈ Rn and z ∈ L) then
(1) holds for every x ∈ Rn.

Gaussian Let ρ(x) = e−π‖x‖
2
2 (density function of Gaussian with standard deviation 1/

√
2π). Then ρ̂ = ρ.

If we let ρs(x) = e−π‖x/s‖
2
2 then ρ̂s = snρ1/s. We have the following claim:
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Claim 1.2. For any lattice L, ∑
z∈L

ρ(z/s) = sn
∑
z∈L

ρ(z)

Proof. Consider the periodic function f(x) =
∑

z∈L ρ(x + z). Then∑
z∈L

g(z) = f(0) =
∑
y∈L∗

f̂(y)

But for every y ∈ L∗,

f̂(y) = 1
det(L)

∫
P(B)

f(x)e−2πi〈x,y〉dx =

1
det(L)

∑
z∈L

∫
P(B)

ρ((x + z)/s)e−2πi〈x,y〉dx = (change of var x + z/s 7→ x )

sn 1
det(L)

∑
z∈L

∫
P(B)+z

ρ(x)e−2πi〈x−z,y〉dx = (〈z,y〉 ∈ Z)

sn 1
det(L)

∑
z∈L

∫
P(B)+z

ρ(x)e−2πi〈x,y〉dx =

sn 1
det(L)

∫
Rn

ρ(x)e−2πi〈x,y〉dx = sn 1
det(L)ρ(y)

Hence we get that ∑
x∈L

ρs(x) = sn 1
det(L∗)

∑
y∈L∗

ρ(y)

Applying this equality again we get the RHS is equal to

sn 1
det(L∗)

1
det(L)

∑
x∈L

ρ(x)

Summation over lattices In fact, the a similar proof to the one above yields a more general statement:

Lemma 1.3. For every function g : Rn → R (not necessarily periodic)∑
x∈L

g(x) = det(L∗)
∑
y∈L∗

ĝ(y)

where ĝ(y) =
∫

Rn g(x)e−2πi〈x,y〉dx.

2 Smoothing parameter

Gaussian For any s let Gs be the Gaussian distribution of vectors with expected norm s, obtained by taking
n independent Gaussians with mean zero and standard deviation s/

√
n. The density function of this

distribution is ρ√2πs/
√
n(x) where ρs(x) = sρ(x/s).
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Adding noise to a lattice point The distribution Ds over P(B) is defined to be Gs (mod P(B)). That
is, for every x ∈ P(B), Ds(x) =

∑
z∈L Gs(x + z) =

∑
z∈L Gs(x − z). Note that we can extend the

latter definition to any point x ∈ Rn to obtain an L-periodic function, which we can think of as the
“distribution” obtained by taking a random lattice point and adding to it Gaussian noise.

Smoothing parameter The smoothing paremeter of L is the smallest s such that Ds is 2−n/100 statistically-
close to the uniform distribution on P(B).

Transferance Theorem The following theorem is very useful in relating lattice parameters to one another:

Theorem 2.1. The following parameters are equivalent to one another up to a multiplicative factor of
O(n):

1. The covering radius of the lattice: smallest r such that dist(x, L) ≤ r for every x ∈ Rn.

2. The smoothing parameter of the lattice.

3. The length of the shortest independent vector collection: λn(L).

4. The inverse of the shortest dual vector 1/λ1(L∗).

(These parameters are also roughly equivalent to the length of shortest basis of L: minimum over all
bases b1, . . . ,bn of L of maxi ‖bi‖2 , though we won’t show that.)

It’s easy to see that the smoothing parameter is larger than the covering radius.

It’s also not hard to see that 1/λ1(L∗) ≤ λn(L). Indeed, if u is the shortest vector in L∗ and v1, . . . ,vn
are n independent vectors in L with ‖vi‖2 ≤ λn(L) then there must exist i such that 〈u,vi〉 6= 0 and
hence (since this is an integer) |〈u,vi〉| ≥ 1. But by Cauchy Schwartz this means that 1 ≤ ‖u‖2‖vi‖2 ≤
λ1(L∗)λn(L).

Moreover one can show that the covering radius is at least λn(L)/2. Indeed, let v1, . . . ,vn be a collection
of linearly independent vectors in L such that vn = λn(L). Then we claim that the vector u = vn/2
has distance at least λn(L)/2 from L. Indeed if there exist w ∈ L such that ‖w − u‖2 < λn(L)/2 then
both w and w − vn are lattice vectors with norm less than λn(L), but they cannot be both in the
hyperplane spanned by v1, . . . ,vn−1 since that would imply vn is in this hyperplane.

Proof of transferance theorem This means that the transferance theorem follows from the following the-
orem:

Theorem 2.2. The smoothing parameter of L is at most 100n/λ1(L∗).

Proof. By scaling we may assume that λ1(L∗) = 10
√
n. This means that it suffices to show that the

Guassian distribution with standard deviation
√
n (density function e−π‖x‖

2
2 ) is close to the uniform

distribution modulo P(B). Since the Fourier transform of the uniform distribution U satisfied Û(0) = 1
and Û(y) = 0 for all y 6= 0, and since the Gaussian distribution is its own Fourier transform, it means
that we need to bound

1
det(L)

∫
P(B)

∑
y∈L∗\{0}

ρ(y)e−2πi〈x,y〉dx =

∑
y∈L∗\{0}

ρ(y) 1
det(L)

∫
P(B)

e−2πi〈x,y〉dx ≤
∑

y∈L∗\{0}

ρ(y) 1
det(L)

∣∣∣∣∣
∫
P(B)

e−2πi〈x,y〉dx

∣∣∣∣∣ ≤ ∑
y∈L∗\{0}

ρ(y)
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But ∑
y∈L∗\{0}

ρ(y) =
∑

y∈L∗\{0}

e−π‖y‖
2
2 ≤

∑
y∈L∗\{0}

e−π‖y/2‖
2
2
−(3/4)(10

√
n)2 =

e−75n
∑

y∈L∗\{0}

e−π‖y/2‖
2
2 ≤ e−75n

∑
y∈L∗

e−π‖y/2‖
2
2 = e−75n2n

∑
y∈L∗

ρ(y)

Hence letting X =
∑

y∈L∗\{0} ρ(y) we get that

X ≤ 2−70n (ρ(0) +X)

In particular, 2X ≤ ρ(0)2−70n but since ρ(0) ≤ 1 we complete the proof.

3 Regev’s First Cryptosystem

Main Theorem Suppose that some lattice problem is worst-case hard, then for every m = poly(n), no
polynomial-time algorithm can distinguish whether m samples come from:

1. The uniform distribution on [0, 1)n.

2. The distribution Tu which is obtained by taking the uniform distribution over all vectors v in
[0, 1)n such that 〈u,v〉 ∈ Z and adding to it the Gaussian distribution with standard deviation
1/(n4‖u‖2).1 The vector u has integer coordinates with a random direction and norm chosen
uniformly from [10n, 100n].

Corollary The following is a secure public key encryption: private key is u, public key is vectors v1, . . . ,vn2

chosen uniformly from Tu. To encrypt one, choose randomly S ⊆ [n2] and output
∑

i∈S vi mod [0, 1)n

and add to it some slight noise, namely a Gaussian with deviation 2−n
1.5

. To encrypt zero, output a
random vector in [0, 1)n. When decrypting z, output zero if 〈z,u〉 (mod 1) ∈ (0.1, 0.9).

Proof of Main Theorem We’ll reduce from the following promise problem on lattices— input is a lattice
L.

Yes instance L∗ has a nonzero vector u of length ∆ = 1/n10 and all other vectors in L∗ that are not
proportional to u have length at least n.

No instance All nonzero vectors in L∗ have length at least n.

The lattice is given by a basis with rational coordinates with common denominator 2n and numerators
in [−22n,+22n]. Regev showed that this problem is equivalent to the approximating the unique shortest
vector problem up to a certain polynomial factor.2

Distribution We let DL be the periodic function over Rn obtained by adding n4-standard deviation Guassian
noise to each lattice point. Using the relation between the smoothing parameter of L and the inverse
of the shortest vector of L∗ we prove:

1. In the No case, DL is exponentially close to the uniform distribution U over Rn (i.e., the constant
function 1).

1By Guassian distribution with std s we mean that we choose n independent gaussians so that the expected norm of the
resulting vector is s.

2Actually Regev only showed this where ∆ is not known exactly but up to a factor of two, we’ll tackle this issue below.
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2. In the Yes case, DL is exponentially close to the distribution TL that is obtained by adding n4

standard deviation Gaussian noise to the uniform distribution over the the hyperplanes {Hk}k∈Z
where Hk = {v : 〈v,u〉 = k}. That is, TL(v) ∼ e−(〈v,u〉 mod 1)2/n8

Therefore, taking any bounded nice shape C in Rn such that we can (approximately) sample a random
lattice point in C, under our assumption it is hard to distinguish the distribution obtained by restricting
TL to C and the uniform distribution on C.

Completing the proof We now complete the reduction. Apply a random rotation to the lattice— this
makes the shortest vector u have a random direction.

Let N be an number chosen at random in [10n/∆, 100n/∆] and let e1 be a lattice vector that is 2n-
close to (N, 0, . . . , 0) (such a vector can be found using LLL). Define e2, . . . , en similarly. Let C be
the parallelepiped of e1, . . . , en. Note that (1) these are nearly orthogonal vectors and so in particular
linearly independent and (2) we can sample a random lattice vector in C by taking a random linear
combination of the basis vectors with coefficients from a large enough range and reducing the resulting
vector modulo C (because the ei’s are lattice vectors, the resulting vector will stay in the lattice).

We map this parallelepiped C to [0, 1)n using the linear transformation T that maps ei to the ith

standard basis. Let u′ be the vector (β1, . . . , βn) where βi = 〈ei,u〉. Note that βi is an integer and is
equal to Nui (where ui denotes the ith coordinate of u) up to a multiplicative factor of (1± 2−n).

Letting TL,C denoting the restriction of TL to C, we claim that T (TL,C) is equal to the distribution
Tu′ on [0, 1]n. Indeed, for every point v ∈ C, writing v =

∑
αiei, we see that 〈v,u〉 =

∑
αi〈ei,u〉 =∑

αiβi = 〈T (v),u′〉) and hence TL(v) is proportional to Tu′(T (v). Since the transformation T is a
linear function (with fixed derivative), this means that the two distributions are proportional and hence
equal.

Now up to a multiplicative 1 ± 2−n factor, u′ is equal to Nu in every coordinate and hence up to
this factor u′ has uniform Guassian direction, and a random length in range [10n, 100n] completing the
proof.

Dealing with unknown ∆ The above assumed that we know ∆ while in reality we’ll only know that it’s
in the interval [1/n10, 2/n10]. Still if we have an distinguisher D we can determine the probability that
it outputs 1 in the uniform distribution, and then run it many times with many guesses for ∆. If in
even one of these times it deviates from this probability then we know that we are in the Yes case. If
the adversary has ε advantage in guessing then we’ll not need more than O(1/ε) repetitions.

Reducing to one dimension Regev’s actual cryptosystem was one dimensional. We can show that the
one-dimensional problem is also hard by projecting [0, 1)n to [0, 1). The idea is to partition [0, 1)n−1

to very small equal sized sets S1, . . . , SM for some (exponentially large M) such that Si is extremely
close to Si+1 and then we project the set Si × [0, 1) to the ith interval [(i− 1)/M, i/M) of length 1/M
in [0, 1). That is, if we get a sample x from a distribution on [0, 1)n, then we map x to (i− 1)/M + xn
where i is the index of Si such that (x1, . . . ,xn−1) ∈ Si. (We choose a nice enough partition so that i
is easy to compute.)
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