
Note on a Spectral Theorem by Forster

Let X = {xxx | x ∈ X } ⊆ℜk be a collection of unit vectors in ℜk indexed by a set X of cardinality at
least 2k. We assume that the vectors in X are in general position, that is, every k-subset of X is
linearly independent. For A ∈ℜk×k , we define the following matrix

M(A) ≡ ∑
x∈X

1
‖Axxx‖2 (Axxx ⊗ Axxx),

where (Axxx ⊗ Axxx) denotes the self-adjoint linear operator defined by (Axxx ⊗ Axxx)(yyy) = 〈Axxx, yyy〉Axxx.
We will show that there exits a matrix A ∈ℜk×k such that

λmin (M(A)) = |X |
k , (1)

where λmin(·) denotes the smallest eigenvalue of a symmetric matrix. Note that any matrix A
that satisfies (1) is necessarily invertible, for otherwise the matrix M(A) has smallest eigenvalue
0. Also note that the matrix M(A) has trace |X |, and hence the equation (1) implies that all
eigenvalues are equal to |X |/k.

In the following claim, we gather a few facts about matrices of the form M(A).

Claim 1. Let A ∈ℜk×k . Then,

1. M(A) is symmetric and positive semidefinite,

2. Tr M(A) = |X |,
3. λmin(M(A)) =λmax(M(A)) if and only if λmin(M(A)) = |X |

k (or λmax(M(A)) = |X |
k ),

4. M(αA) = M(A) for any non-zero scalar α ∈ℜ,

5. A ∈GL(k) if and only if M(A) ∈GL(k),

Proof. Items 1–4 can be verified easily. 5.) The range of M(A) is equal to the span of the set
{Axxx | x ∈ X }. By the general position assumption for X , the span of the set {Axxx | x ∈ X } is equal
to ℜk if A is non-singular. On the other hand, if A is singular, then {Axxx | x ∈ X } cannot span
ℜk .

Lemma 2. For every non-singular matrix B ∈ℜk×k , there exists δ> 0 such that

λmin (M(AB)) ≥ min
{ |X |

k ,λmin (M(B))+δ
}

,

where A = M(B)−1/2.

Proof. For x ∈ X , let xxx ′ = 1
‖Bxxx‖Bxxx be the unit vector in direction Bxxx. Note that (

∑
x∈X (xxx ′⊗xxx ′)) =

M(B) = A−2. We may assume λmin ≡ λmin
(∑

x∈X (xxx ′⊗xxx ′)
) < |X |/k, for otherwise the lemma is

trivially true. Also note that λmin = 1/λmax(A2) = 1/λmax(A)2.
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In order to prove the lemma, it remains to show that the matrix M(AB)−λminI has only pos-
itive eigenvalues. Since A is symmetric, we have (Axxx ′⊗ Axxx ′) = A(xxx ′⊗xxx ′)A and thus

∑
x∈X (Axxx ′⊗

Axxx ′) = A(
∑

x∈X (xxx ′⊗xxx ′))A = I . Hence,

M(A)−λminI =∑
x∈X

1
‖Axxx ′‖2 (Axxx ′⊗ Axxx ′)−λminI

=∑
x∈X ( 1

‖Axxx ′‖2 −λmin)(Axxx ′⊗ Axxx ′) (using
∑

(Axxx ′⊗ Axxx ′) = I )

=∑
x∈X αx(Axxx ′⊗ Axxx ′) (αx ≡ 1

‖Axxx ′‖2 −λmin)

º 0. (using αx ≥ 0, because ‖Axxx‖2 ≤λmax(A2) =λ−1
min)

Let X0 denote the set of indices x such that αx = 0. We claim that X0 has cardinality at most k.
Assuming this claim, we can finish the proof of the lemma as follows. If |X0| < k, then there are at
least |X |−k ≥ k indices such thatαx > 0. By the general position assumption, the corresponding
set of vectors {AAAxxx ′ | x ∈ X \ X0} spans ℜk . Hence for every unit vector yyy , there exists an index
x1 ∈ X \ X0 such that 〈Axxx ′

1, yyy〉 6= 0. Thus

〈(∑x∈X αx(Axxx ′⊗ Axxx ′)
)

yyy , yyy〉 ≥ 〈αx1 (Axxx ′
1 ⊗ Axxx ′

1)yyy , yyy〉
=αx1〈Axxx ′

1, yyy〉2 > 0.

It follows that the matrix∑
x∈X αx(Axxx ′⊗ Axxx ′) =∑

x∈X
1

‖Axxx ′‖2 (Axxx ′⊗ Axxx ′)−λminI = M(AB)−λminI

has only positive eigenvalues, which proves the lemma.
It remains to prove the claim that |X0| < k. For the sake of a contradiction, assume |X0| ≥ k.

Then there are k linearly independent vectors xxx ′ such that ‖Axxx ′‖ =λmax(A). Thus the eigenspace
of A corresponding toλmax(A) has dimension k. It follows that the eigenspace of A−2 =∑

x∈X (xxx ′⊗
xxx ′) corresponding to λmin = 1/λmax(A)2 has dimension k. Hence |X | = Tr (A−2) = kλmin, which
contradicts our assumption λmin < |X |/k.

Lemma 3. Let A = {A(`) | ` ∈N} ⊆ℜk×k be any sequence of non-singular matrices with ‖A(`)‖ = 1.
Suppose A has a subsequence that converges to a singular matrix A. Then, for every ε> 0, there
exists an ` ∈N such that

λmin
(
M(A(`)))

)< 1+ε.

Proof. Suppose that the kernel of A has dimension d > 0. Then there exist d ortho-normal
vectors eee1, . . . ,eeed such that 〈Axxx,eee i 〉 = 0 for every i ∈ [d ] and x ∈ X . Let X0 denote the set of
indices x such that Axxx = 0. Since ‖A‖ = lim`→∞ ‖A(`)‖ = 1, the matrix A cannot be 0 and hence
d < k. Therefore, using the general positive assumption, X0 has cardinality at most d . In the
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following, we restrict A to the subsequence that converges to A. Then,

limsup
`→∞

∑
i∈[d ]

〈M(A(`))eee i ,eee i 〉

= limsup
`→∞

∑
i∈[d ]

〈
(∑

x∈X
1

‖A(`)xxx‖2 (A(`)xxx ⊗ A(`)xxx)
)

eee i ,eee i 〉

= limsup
`→∞

∑
i∈[d ]

∑
x∈X

1
‖A(`)xxx‖2 〈A(`)xxx,eee i 〉2

= limsup
`→∞

∑
x∈X0

∑
i∈[d ]

〈 1
‖A(`)xxx‖ A(`)xxx,eee i 〉2 (using lim`→∞

〈
1

‖A(`)xxx‖ A(`)xxx,eee i

〉
= 0 for x 6∈ X0)

≤ limsup
`→∞

∑
x∈X0

1 (using
∑

i∈[d ]〈yyy ,eee i 〉2 ≤ 1 for any unit vector yyy)

≤ d .

It follows that for every ε> 0, there exists i ∈ [d ] and ` ∈N such that

〈M(A(`))eee i ,eee i 〉 < 1+ε,

which proves the lemma.

Proof of the Theorem

We will need the following claim.

Claim 4. At every matrix A0 ∈GL(k), the following functions are continuous:

g (A) =λmin(M(A)), f (A) =λmin(M(M(A)−1/2 A)).

Proof. Follows from the fact that the composition of continuos mappings is continuos.

Theorem 5. There exists a matrix A∗ ∈ℜk×k such that

λmin
(
M(A∗)

)= |X |
k .

Proof. We define a sequence A = {A(`) | ` ∈N} ⊆ℜk×k of non-singular matrices with ‖A‖ = 1 by
the following recurrence

A(`+1) = 1
‖M(A(`))−1/2 A(`)‖M(A(`))−1/2 A(`), (2)

where we choose A(1) to be the linear operator that maps the first k vectors in X to the canonical
(orthogonal) basis of ℜk . Note that M(A(`)) = M(M(A(`−1))−1/2 A(`−1)). Hence, by Lemma 2, the
sequence {λ(`)

min | ` ∈N} defined by

λ(`)

min ≡ g (A(`)) =λmin
(
M(A(`))

)
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is strictly increasing in ` until it possibly reaches |X |/k. Furthermore, we haveλ(1)

min ≥ 1, because

M(A(1)) =∑
x∈X

1
‖A(1)xxx‖2 (A(1)xxx ⊗ A(1)xxx) º ∑

x∈{x1,...,xk }

1
‖A(1)xxx‖2 (A(1)xxx ⊗ A(1)xxx)

=
k∑

i=1
(eee i ⊗eee i ) = I ,

where x1, . . . , xk are the first k indices of X , and eee1, . . . ,eeek is the canonical basis of ℜk . It follows
that λ(2)

min ≥ 1+ε for some ε> 0.
Let A ′ = {A(`(t )) | t ∈N} denote a converging subsequence of A . Note that A has a converging

subsequence, because it is contained in the bounded set {A ∈ ℜk×k | ‖A‖ ≤ 1}. By Lemma 3
and the observation λ(`)

min ≥ 1+ ε for ` > 1, the limit of A ′ is a non-singular matrix A∗. By the
continuity of the function f at non-singular matrices,

f (A∗) = lim
t→∞ f (A(`(t ))) (using continuity of f at A∗)

= lim
t→∞λmin(M(M(A(`(t )))−1/2 A(`(t ))))

= lim
t→∞λmin

(
M(A(`(t )+1))

)
(using M(M(A(`))−1/2 A(`)) = M(A(`+1)) for ` ∈N)

= lim
`→∞

λ(`)

min (using convergence of {λ(`)

min | ` ∈N})

= lim
t→∞λ

(`(t ))

min

= lim
t→∞g (A(`(t )))

= g (A∗) (using continuity of g at A∗)

By Lemma 2, the condition f (A∗) = g (A∗) implies that λmin(M(A∗)) = |X |
k , which proves the

theorem.
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