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Chapter 13

Communication Complexity

Communication complexity concerns the following scenario. There are two players with unlimited
computational power, each of whom holds an n bit input, say x and y. Neither knows the other’s
input, and they wish to collaboratively compute f(x, y) where the function f :{0, 1}n × {0, 1}n →
{0, 1} is known to both. Furthermore, they had foreseen this situation (e.g., one of the parties could
be a spacecraft and the other could be the base station on earth), so they had already —before
they knew their inputs x, y— agreed upon a protocol for communication.1 The cost of this protocol
is the number of bits communicated by the players for the worst-case choice of inputs x, y.

Researchers have studied many modifications of the above basic scenario, including randomized
protocols, nondeterministic protocols, and average-case protocols. Furthermore, lower bounds on
communication complexity have uses in a variety of areas, including lower bounds for parallel and
VLSI computation, circuit lower bounds, polyhedral theory, data structure lower bounds, and more.

In this chapter we only give a very rudimentary introduction to this area. In Section 13.1 we
provide the basic definition of two-party deterministic communication complexity. In Section 13.2
we survey some of the techniques used to prove lower bounds for the communication complexity
of various functions, using the equality function (i.e., f(x, y) = 1 iff x = y) as a running example.
In Section 13.3 we define multiparty communication complexity and show a lower bound for the
generalized inner product function. Section 13.4 contains a brief survey of other models studied, in-
cluding probabilistic and non-deterministic communication complexity. The chapter notes mention
some of the many applications of communication complexity.

13.1 Definition of two-party communication complexity.

Now we formalize the informal description of communication complexity given above:

1Do not confuse this situation with information theory, where an algorithm is given messages that have to be
transmitted over a noisy channel, and the goal is to transmit them robustly while minimizing the amount of com-
munication. In communication complexity the channel is not noisy and the players determine what messages to
send.

p13.1 (241)
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Definition 13.1 (Two party communication complexity)
Let f : {0, 1}2n → {0, 1} be a function. A t-round two party protocol Π for computing
f is a sequence of t functions P1, . . . , Pt : {0, 1}∗ → {0, 1}∗. An execution of Π on
inputs x, y involves the following: Player 1 computes p1 = P1(x) and sends p1

to Player 2, Player 2 computes p2 = P2(y, p1) and sends p2 to Player 1, and so on.
Generally, at the ith round, if i is odd then Player 1 computes pi = Pi(x, p1, . . . , pi−1)
and sends pi to Player 2, and similarly if i is even then Player 2 computes pi =
Pi(y, p1, . . . , pi−1) and sends pi to Player 1.

The protocol Π is valid if for every pair of inputs x, y, the last message sent (i.e.,
the message pt) is equal to the value f(x, y). The communication complexity of Π
is the maximum number of bits communicated (i.e., maximum of |p1| + . . . + |pt|)
over all inputs x, y ∈ {0, 1}n. The communication complexity of f , denoted by C(f)
is the minimum communication complexity over all valid protocols Π for f .

For every function, C(f) ≤ n + 1 since the trivial protocol is for first player to communicate
his entire input, whereupon the second player computes f(x, y) and communicates that single bit
to the first. Can they manage with less communication?

Example 13.2 (Parity)
Suppose the function f(x, y) is the parity of all the bits in x, y. Then C(f) = 2. Clearly, C(f) ≥ 2
since the function depends nontrivially on each input, so each player must transmit at least one
bit. The fact that C(f) ≤ 2 is demonstrated by the following protocol: Player 1 sends the parity
a of the bits in x and Player 2 sends a XOR’d with the parity of the bits in y.

Example 13.3 (Halting Problem)
Consider the function H:{0, 1}n × {0, 1}n → {0, 1} defined as follows. If x = 1n and y = code(M)
for some Turing Machine M such that M halts on x then H(x, y) = 1 otherwise H(x, y) = 0. The
communication complexity of this is at most 2; first player sends a bit indicating whether or not
his input is 1n. The second player then determines the answer and sends it to the first player. This
example emphasizes that the players have unbounded computational power, including ability to
solve the Halting Problem.

Sometimes students ask whether a player can communicate by not saying anything? (After all,
they have three options in each round: send a 0, or 1, or not send anything.) We can regard such
protocols as having one additional bit of communication, and analyze them analogously.

13.2 Lower bound methods

Now we discuss methods for proving lower bounds on communication complexity. As a running
example in this chapter, we will use the equality function:

EQ(x, y) =

{
1 if x = y

0 otherwise

It turns out that almost no improvement is possible over the trivial n + 1 bit communication
protocol for this function:
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Theorem 13.4 (Equality has linear communication complexity)
C(EQ) ≥ n

We will prove Theorem 13.4 by several methods below.

13.2.1 The fooling set method

The first proof of Theorem 13.4 uses an idea called fooling sets. For any communication protocol for
any function, suppose x, x′ are any two different n-bit strings such that the communication pattern
(i.e., sequence of bits transmitted) is the same on the input pairs (x, x) and (x′, x′). Then we claim
that the players’ final answer must be the same on all four input-pairs (x, x), (x, x′), (x′, x), (x′, x′).
This is shown by an easy induction. If player 1 communicates a bit in the first round, then by
hypothesis this bit is the same whether his input is x or x′. If player 2 communicates in the 2nd
round, then his bit must also be the same on both inputs x and x′ since he receives the same bit
from player 1. And so on. We conclude that at the end, the players’ answer on (x, x) must agree
with their answer on (x, x′).

To show C(EQ) ≥ n it suffices to note that if a protocol exists whose complexity is at most
n−1, then there are only 2n−1 possible communication patterns. But there are 2n choices for input
pairs of the form (x, x) and so by the pigeonhole principle, there exist two distinct pairs (x, x) and
(x′, x′) on which the communication pattern is the same. But then the protocol must be incorrect,
since EQ(x, x′) = 0 6= EQ(x, x). This completes the proof. This argument can be easily generalized
as follows (Exercise 13.1):

Lemma 13.5 Say that a function f : {0, 1}n × {0, 1}n → {0, 1} has a size M fooling set if there is
an M -sized subset S ⊆ {0, 1}n × {0, 1}n and a value b ∈ {0, 1} such that (1) for every 〈x, y〉 ∈ S,
f(x, y) = b and (2) for every distinct 〈x, y〉, 〈x′, y′〉 ∈ S, either f(x, y′) 6= b or f(x′, y) 6= b.

If f has a size-M fooling set then C(f) ≥ logM .

Example 13.6 (Disjointness)
Let x, y be interpreted as characteristic vectors of subsets of {1, 2, . . . , n}. Let DISJ(x, y) = 1 if
these two subsets are disjoint, otherwise DISJ(x, y) = 0. As a corollary of Lemma 13.5 we obtain
that C(DISJ) ≥ n since the following 2n pairs constitute a fooling set:

S =
{

(A,A) : A ⊆ {1, 2, . . . , n}
}
.

13.2.2 The tiling method

The tiling method for lower bounds takes a more global view of the function f . Consider the
matrix of f , denoted M(f), which is a 2n×2n matrix whose (x, y)’th entry is the value f(x, y) (see
Figure 13.1.) We visualize the communication protocol in terms of this matrix. A combinatorial
rectangle (or just rectangle for short) in the matrix M is a submatrix of M that corresponds to
entries in A× B where A ⊆ {0, 1}n, B ⊆ {0, 1}n, we say that A× B is monochromatic if for all x
in A and y in B, Mx,y is the same. If the protocol begins with the first player sending a bit, then
M(f) partitions into two rectangles of the type A0 × {0, 1}n, A1 × {0, 1}n, where Ab is the subset
of the input for which the first player communicates the bit b. Notice, A0 ∪ A1 = {0, 1}n. If the
next bit is sent by the second player, then each of the two rectangles above is further partitioned
into two smaller rectangles depending upon what this bit was. Finally, if the total number of bits
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Figure 13.1: Matrix M(f) for the equality function when the inputs to the players have 3 bits. The numbers in the
matrix are values of f .

communicated is k then the matrix gets partitioned into 2k rectangles. Note that each rectangle
in the partition corresponds to a subset of input pairs for which the communication pattern thus
far has been identical. (See Figure 13.2 for an example.) When the protocol stops, the value of f
is determined by the sequence of bits sent by the two players, and thus must be the same for all
pairs x, y in that rectangle. Thus the set of all communication patterns must lead to a partition of
the matrix into monochromatic rectangles.
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Figure 13.2: Two-way communication matrix after two steps. The large number labels are the concatenation of
the bit sent by the first player with the bit sent by the second player.

Definition 13.7
A monochromatic tiling of M(f) is a partition of M(f) into disjoint monochromatic rectangles.
We denote by χ(f) the minimum number of rectangles in any monochromatic tiling of M(f).

We have the following connection to communication complexity.

Theorem 13.8 (Tiling and communication complexity [AhoUlYa83])
log2 χ(f) ≤ C(f) ≤ 16(log2 χ(f))2.

Proof: The first inequality follows from our above discussion, namely, if f has communication
complexity k then it has a monochromatic tiling with at most 2k rectangles. The second inequality
is left as Exercise 13.4. �
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The following observation shows that for every function f whose communication complexity can
be lower bounded using the fooling set method, the communication complexity can also be lower
bounded by the tiling method. Hence the latter method subsumes the former.

Lemma 13.9 If f has a fooling set with m pairs, then χ(f) ≥ m.

Proof: If (x1, y1) and (x2, y2) are two of the pairs in the fooling set, then they cannot be in a
monochromatic rectangle since not all of (x1, y1), (x2, y2), (x1, y2), (x2, y1) have the same f value.
�

13.2.3 The rank method

Now we introduce an algebraic method to lower bound χ(f) (and hence the communication com-
plexity of f). Recall the notion of rank of a square matrix: the size of the largest subset of rows
that are linearly independent. The following lemma (left as Exercise 13.5) gives an equivalent
characterization of the rank:

Lemma 13.10 The rank of an n×n matrix M over a field F, denoted by rank(M), is the minimum
value of ` such that M can be expressed as

M =
∑̀
i=1

Bi ,

where each Bi is an n× n matrix of rank 1.

Note that 0, 1 are elements of every field, so we can compute the rank of a binary matrix over
any field we like. The choice of field can be crucial; see Exercise 13.8.

Observing that every monochromatic rectangle can be viewed (by filling out entries outside the
rectangle with 0’s) as a matrix of rank at most 1 , we obtain the following theorem:

Theorem 13.11
For every function f , χ(f) ≥ rank(M(f)).

Example 13.12
The matrix for the equality function is simply the identity matrix, and hence rank(M(Eq)) = 2n.
Thus, C(EQ) ≥ logχ(EQ) ≥ n, yielding another proof of Theorem 13.4.

13.2.4 The discrepancy method

For this method it is convenient to transform f into a ±1-valued function by using the map
b 7→ (−1)b (i.e., 0 7→ +1, 1 7→ −1. Thus M(f) will also be a ±1 matrix. We defined the discrepancy
of a rectangle A×B in a 2n × 2n matrix M to be

1
22n

∣∣∣∣∣∣
∑

x∈A,y∈B
Mx,y

∣∣∣∣∣∣ .
The discrepancy of the matrix M(f), denoted by Disc(f), is the maximum discrepancy among

all rectangles. The following easy lemma relates it to χ(f).
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Lemma 13.13 χ(f) ≥ 1
Disc(f)

.

Proof: If χ(f) ≤ K then there exists a monochromatic rectangle having at least 22n/K entries.
Such a rectangle will have discrepancy at least 1/K. �

Lemma 13.13 can be very loose. For the equality function, the discrepancy is at least 1 − 2−n

(namely, the discrepancy of the entire matrix), which would only give a lower bound of 2 for χ(f).
However, χ(f) is at least 2n, as already noted.
Now we describe a method to upper bound the discrepancy using eigenvalues.

Lemma 13.14 (Eigenvalue bound) For any real matrix M , the discrepancy of a rectangle A × B is
at most λmax(M)

√
|A| |B|/22n, where λmax(M) is the magnitude of the largest eigenvalue of M .

Proof: Let 1S ∈ R2n
denote the characteristic vectors of a subset S ⊆ {0, 1}n (i.e., the xth

coordinate of 1S is equal to 1 if x ∈ S and to 0 otherwise). Note ‖1S‖2 =
√∑

x∈S 12 =
√
|S|. Note

also that for every A,B ⊆ {0, 1}n,
∑

x∈A,y∈BMx,y = 1†AM1B.
The discrepancy of the rectangle A×B is

1
22n

1†AM1B ≤
1

22n
λmax(M)

∣∣∣1†A1B
∣∣∣ ≤ 1

22n
λmax(M)

√
|A| |B| ,

where the last inequality uses Cauchy-Schwartz. �

Example 13.15
The mod 2 inner product function defined as f(x, y) = x�y =

∑
i xiyi( mod 2) has been encountered

a few times in this book. To bound its discrepancy, let N be the pm1 matrix corresponding to f (i.e.,
Mx,y = (−1)x�y). It is easily checked that every two distinct rows (columns) of N are orthogonal,
every row has `2 norm 2n/2, and that NT = N . Thus we conclude that N2 = 2nI where I is the
unit matrix. Hence every eigenvalue is either +2n/2 or −2n/2, and thus Lemma 13.14 implies that
the discrepancy of a rectangle A × B is at most 2−3n/2

√
|A| |B| and the overall discrepancy is at

most 2−n/2 (since |A| , |B| ≤ 2n).

13.2.5 A technique for upper bounding the discrepancy

We describe an upper bound technique for the discrepancy that will later be useful also in the
multiparty setting (Section 13.3). As in Section 13.2.4, we assume that f is a ±1-valued function.
We define the following quantity:

Definition 13.16
E(f) = Ea1,a2,b1,b2

[∏
i=1,2

∏
j=1,2 f(ai, bj)

]
.

Note that E(f) can be computed, like the rank, in time polynomial in the size of the matrix
M(f). By contrast, the definition of discrepancy involves a maximization over all possible subsets
A,B, and a naive algorithm for computing it would take time exponential in the size of M(f). The
following Lemma relates these two quantities.

Lemma 13.17

Disc(f) ≤ E(f)1/4.
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Proof: The proof follows in two steps.

Claim 1: For every function h :{0, 1}n × {0, 1}n → {1,−1}, E(h) ≥ (Ea,b[f(a, b)])4.
We will use the Cauchy-Schwartz inequality, specifically, the version according to which E[z2] ≥

(E[z])2 for every random variable z.

E(h) = E
a1,a2

 E
b1,b2

∏
i=1,2

∏
j=1,2

h(ai, bj)

 (1)

= E
a1,a2

[(
E
b
[h(a1, b)h(a2, b)]

)2
]

(2)

≥
(

E
a1,a2

[
E
b
[h(a1, b)h(a2, b)]

])2

(Cauchy Schwartz) (3)

≥
(

E
a,b

[h(a, b)]
)4

. (repeating previous two steps) (4)

Claim 2: For every function f there is a function h such that E(f) = E(h) and Ea,b[h(a, b)] ≥
Disc(f).

First, we note that for every two functions g1, g2 :{0, 1}n → {−1, 1}, if we define h = f ◦ g1 ◦ g2

as
h(a, b) = f(a, b)g1(a)g2(b)

then E(f) = E(h). The reason is that for all a1, a2, b1, b2,∏
i=1,2

∏
j=1,1

h(ai, bj) = g1(a1)2g1(a2)2g2(b1)2g2(b2)2
∏
i=1,2

∏
j=1,2

f(ai, bj)

and the square of any value of g1, g2 is 1.
Now we prove Claim 2 using the probabilistic method. Fix A,B ⊆ {0, 1}n and define two

random functions g1, g2 : {0, 1}n → {−1, 1} as below. First, for each a 6∈ A pick a random value
ra in {−1, 1} and for each b 6∈ B pick a random value sb in {−1, 1}. All random choices are
independent of one another. Let

g1(a) =

{
1 if a ∈ A
ra else

g2(b) =

{
1 if b ∈ B
sb else

Let h = f ◦ g1 ◦ g2, and therefore E(h) = E(f). Furthermore

E
g1,g2

[
E
a,b

[h(a, b)]
]

= E
a,b

[
E

g1,g2
[f(a, b)g1(a)g2(b)]

]
(5)

=
1

22n

∑
a∈A,b∈B

f(a, b) (6)

= Disc(f) (7)

where the second line follows from the fact that Eg1 [g1(a)] = Eg2 [g2(b)] = 0 for a 6∈ A and b 6∈ B.
Thus in particular there exist g1, g2 such that |Ea,b[h(a, b)]| ≥ Disc(f). �

We will see an example for a lower bound using this technique in Section 13.3.
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13.2.6 Comparison of the lower bound methods

The tiling argument is the strongest lower bound technique, since bounds on rank, discrepancy and
fooling sets imply a bound on χ(f), and hence can never prove better lower bounds than the tiling
argument. Also, as Theorem 13.10, logχ(f) fully characterizes the communication complexity of
f up to a constant factor. The rank and fooling set methods are incomparable, meaning that each
can be stronger than the other for some function. However, if we ignore constant factors, the rank
method is always at least as strong as the fooling set method (see Exercise 13.6). Also, we can
separate the power of these lower bound arguments. For instance, we know functions for which a
polynomial gap exists between logχ(f) and log rank(M(f)). However, the following conjecture (we
only state one form of it) says that rank is in fact optimal up to a polynomial factor.

Conjecture 13.18 (log rank conjecture)
There is a constant c > 1 such that C(f) = O(log(rank(M(f)))c) for all f and all input sizes n,
where rank is taken over the reals.

Of course, the difficult part of the above conjecture is to show that low rank implies a low-
complexity protocol for f . Though we are still far from proving this, Nisan and Wigderson have
shown that at least low rank implies low value of 1/Disc(f).

Theorem 13.19 ([NisanWi95])
1/Disc(f) = O(rank(f)3/2).

13.3 Multiparty communication complexity

There is more than one way to generalize communication complexity to a multiplayer setting. The
most interesting model turns out to be the “number on the forehead” model: each player has a
string on his head which everybody else can see but he cannot. That is, there are k players and
k strings x1, . . . , xk, and Player i gets all the strings except for xi. The players are interested
in computing a value f(x1, x2, . . . , xk) where f : ({0, 1}n)k → {0, 1} is some fixed function. As
in the 2-player case, the k players have an agreed-upon protocol for communication (which was
decided before they were given their strings), and all their communication is posted on a “public
blackboard” that all of them can see (the protocol also determines the order in which the players
write on the blackboard). The last message sent should contain (or at least easily determine) the
value f(x1, . . . , xk) of the function on the inputs. By analogy with the 2-player case, we denote by
Ck(f) the number of bits that must be exchanged by the best protocol. Note that it is at most
n + 1, since it suffices for any j 6= i to write xi on the blackboard, at which point the ith player
knows all k strings and can determine and publish f(x1, . . . , xk).

Example 13.20
Consider computing the function

f(x1, x2, x3) =
n⊕
i=1

maj(x1i, x2i, x3i)

in the 3-party model where x1, x2, x3 are n bit strings. The communication complexity of this
function is 3: each player counts the number of i’s such that she can determine the majority of
x1i, x2i, x3i by examining the bits available to her. She writes the parity of this number on the
blackboard, and the final answer is the parity of the players’ bits. This protocol is correct because
the majority for each row is known by either 1 or 3 players, and both are odd numbers.
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Example 13.21 (Generalized Inner Product)
The generalized inner product function GIPk,n maps nk bits to 1 bit as follows

f(x1, . . . , xk) =
n⊕
i=1

k∧
j=1

xji. (8)

Notice, for k = 2 this reduces to the mod 2 inner product of Example 13.15.

For the 2-player model we introduced the notion of a monochromatic rectangle in order to prove
lower bounds. Specifically, a communication protocol can be viewed as a way of partitioning the
matrix M(f): if the protocol exchanges c bits, then the matrix is partitioned into 2c rectangles, all
of which must be monochromatic if the protocol is valid.

The corresponding notion in the k-party case is a cylinder intersection. A cylinder in dimension
i is a subset S of the inputs such that if (x1, . . . , xk) ∈ S then (x1, . . . , xi−1, x

′
i, xi+1, . . . , xk) ∈ S

for all x′i also. A cylinder intersection is ∩ki=1Ti where Ti is a cylinder in dimension i. Since player
i’s communication does not depend upon xi, it can be viewed as partitioning the set of inputs
according to cylinders in dimension i. Thus we conclude that at the end of the protocol, the cube
{0, 1}nk is partitioned using cylinder intersections, and if the protocol communicates c bits, then
the partition consists of at most 2c monochromatic cylinder intersections. Thus we have proved:

Lemma 13.22 If every partition of M(f) into monochromatic cylinder intersections requires at least
R cylinder intersections, then the k-party communication complexity is at least dlog2Re, where
M(f) is the k-dimensional table whose (x1, . . . , xk)th entry is f(x1, . . . , xk).

Discrepancy-based lower bound

In this section, we will assume as in our earlier discussion of discrepancy that the range of the
function f is {−1, 1}. We define the k-party discrepancy of f by analogy to the 2-party case

Disc(f) =
1

2nk
max
T

∣∣∣∣∣∣
∑

(a1,a2,...,ak)∈T

f(a1, a2, . . . , ak)

∣∣∣∣∣∣ ,
where T ranges over all cylinder intersections.

To upper bound the discrepancy we introduce the k-party analogue of E(f). Let a cube be a
set D in {0, 1}nk of 2k points of the form {a1,1, a2,1} × {a1,2, a2,2} × · · · × {a1,k, a2,k}, where each
ai,j ∈ {0, 1}n.

E(f) = ED

[∏
a∈D

f(a)

]
.

Notice that the definition of E(f) for the 2-party case is recovered when k = 2. The next lemma
is also an easy generalization.

Lemma 13.23

Disc(f) ≤ (E(f))1/2k
.
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The proof is analogous to Lemma 13.17 and is left as Exercise 13.11. The only difference is
that instead of defining 2 random functions we need to define k random functions g1, g2, . . . , gk :
{0, 1}nk → {−1, 1}, where gi depends on every one of the k coordinates except the ith.

Now we can prove a lower bound for the Generalized Inner Product (GIP) function. Note that
since we changed the range to {−1, 1}, this function is now defined as

GIPk,n(x1, x2, . . . , xk) = (−1)
∑

i≤n

∏
j≤k xji(mod2). (9)

Theorem 13.24 (Lower bound for generalized inner product )
The function GIPk,n has k-party communication complexity Ω(n/4k).

Proof: We use induction on k. For k ≥ 1 let βk = 1 − 2−k. Note that for every k, βk+1 = 1+βk
2 .

We claim that
E(GIPk,n) ≤ (βk)n.

The base case k = 1 is trivial— in this caseGIP1,n(x) =
∏

(−1)xi , and E(GIP1,n) = Ea,b[GIP1,n(a)GIP1,n(b)] =
Ea[GIP1,n(a)] Eb[GIP1,n(b)] = 0 because a, b are independent and GIP has an equal number of +1
and −1 outputs. Assuming truth for k − 1 we prove for k. A random cube D in {0, 1}nk is picked
by picking a11, a21 ∈ {0, 1}n and then picking a random cube D′ in {0, 1}(k−1)n.

E(GIPk,n) = E
a11,a21

E
D′

 ∏
a∈{a11,a21}×D′

GIPk,n(a)

 (10)

Suppose the strings a11 and a21 agree on t coordinates. Examining the expression for GIPk,n in (9)
we see that these coordinates contribute nothing once we multiply all the terms in the cube, since
their contributions get squared and thus become 1. Thus the inductive hypothesis implies that the
contribution is at most (βk−1)n−t. Since the probability that two randomly chosen n-bit strings
a11 and a21 agree on t coordinates is

(
n
t

)
2−n, we conclude that

E(GIPk,n) ≤
n∑
t=0

(
n
t

)
2n

(βk−1)n−t = (by binomial expansion) (11)

(
1
2

+
βk−1

2
)n = (12)

(βk)n . (13)

This completes the proof since (βk)n = (1 − 2−k)n ∼ e−n/2
k
. Hence Disc(f) = O(e−(n/2k)2−k

) =
2−Ω(n/4k). �

At the moment, we do not know of any explicit function f for which Ck(f) ≥ n2−o(k) and in
particular have no non-trivial lower bound for computing explicit functions f : ({0, 1}n)k → {0, 1}
for k ≥ log n.

13.4 Overview of other communication models

We outline some of the alternative settings in which communication complexity has been studied.

Randomized protocols: One can consider randomized protocols for jointly computing the value
of a function. In such protocols, all players have access to a shared random string r, which
they use in determining their actions. We define R(f) to be the expected number of bits com-
municated by the players. It turns out that randomization can sometimes make a significant
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difference. For example, the equality function has a randomized communication protocol with
O(log n) complexity (see Exercise 13.12). Nevertheless, there are techniques to prove lower
bounds for such protocols as well.

Non-deterministic protocols: One can also define non-deterministic communication complexity
analogously to the definition of the class NP. In a non-deterministic protocol, the players
are both provided an additional third input z (“nondeterministic guess”) of some length m
that may depend on x, y. Apart from this guess, the protocol is deterministic. We require
that f(x, y) = 1 iff there exists a string z that makes the players output 1, and the cost of the
protocol is m plus the number of bits communicated. Once again, this can make a significant
difference. For example both the inequality and intersection functions (i.e., the negations of
the functions EQ and the function DISJ of Example 13.6) are easily shown to have logarithmic
non-deterministic communication complexity. Analogously to the definition of coNP, one can
define the co-non-deterministic communication complexity of f to be the non-deterministic
communication complexity of the function g(x, y) = 1 − f(x, y). Interestingly, it can be
shown that if f has non-deterministic communication complexity k and co-non-deterministic
communication complexity `, then C(f) ≤ 10k`, hence implying that in the communication
complexity world the intersection of the classes corresponding to NP and coNP is equal to
the class corresponding to P. In contrast, we believe that P 6= NP ∩ coNP.

Average case protocols: Just as we can study average-case complexity in the Turing machine
model, we can study communication complexity when the inputs are chosen from a distribu-
tion D. This is defined as

CD(f) = min
Pprotocol for f

E
(x,y)∈RD

[Number of bits exchanged by P on x, y.]

Computing a non Boolean function: Here the function’s output is not just {0, 1} but an m-bit
number for some m. We discuss one example in the exercises.

Asymmetric communication: In this model the “cost” of communication is asymmetric: there
is some B such that it costs the first player B times as much to transmit a bit than it does
the second player. The goal is to minimize the total cost.

Computing a relation: One can consider protocols that aim to hit a relation rather than com-
puting a function. That is, we have a relation R ⊆ {0, 1}n×{0, 1}n×{1, 2, . . . ,m} and given
x, y ∈ {0, 1}n the players seek to agree on any b ∈ {1, 2, . . . ,m} such that (x, y, b) ∈ R. See
Exercise 13.13.

These and many other settings are discussed in [kushNis].
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What have we learned?

• The communication complexity of a two input function f is the number of bits
that a player holding x and a player holding y need to exchange to compute
f(x, y).

• Methods to lower bound the communication complexity of specific functions
include the fooling set, tiling, rank, and discrepancy methods. Using these
methods we have several examples of explicit functions on two n-bit inputs
whose communication complexity is at least n.

• The multiparty communication complexity of a k-input function f is the num-
ber of bits that k parties need to exchange to compute f where the ith player
has all the inputs except the ith input. The best known lower bound of
the k-party communication complexity of an explicit function is of the form
n/2−Ω(k).

• Other models of communication complexity studies include probabilistic, non-
deterministic, and average-case communication complexity, and the commu-
nication complexity of computing relations.

Chapter notes and history

This chapter barely scratched the surface of this self-contained mini-world within complexity theory;
an excellent and detailed treatment can be found in the book by Kushilevitz and Nisan [kushNis]
(though it does not contain some of the newer results).

Communication complexity was first defined by Yao [yao79]. Other early papers that founded
the field were Papadimitriou and Sipser [papadimitriouS84], Mehlhorn and Schmidt [mehlhornS82]
(who introduced the rank lower bound) and Aho, Ullman and Yannakakis [ahoUY83].

We briefly discussed parallel computation in Chapter 6. Yao [yao79] invented communication
complexity as a way to lower bound the running time of parallel computers for certain tasks. The
idea is that the input is distributed among many processors, and if we partition these processors
into two halves, we may lower bound the computation time by considering the amount of com-
munication that must necessarily happen between the two halves. A similar idea is used to prove
time/space lower bounds for VLSI circuits. For instance, in a VLSI chip that is an m×m grid, if
the communication complexity for a function is greater than c, then the time required to compute
it is at least c/m.

Communication complexity is also useful in time-space lower bounds for Turing machines (see
Exercise 13.3), and circuit lower bounds (see Chapter 14).

Data structures such as heaps, sorted arrays, lists etc. are basic objects in algorithm de-
sign. Often, algorithm designers wish to determine if the data structure they have designed is
the best possible. Communication complexity lower bounds can be used to establish such results.
See [kushNis].

Yannakakis [yannakakis91] has shown how to use communication complexity lower bounds
to prove lower bounds on the size of polytopes representing NP-complete problems. Solving the
open problem mentioned in Exercise 13.10 would prove a lower bound for the polytope representing
vertex cover.

Theorem 13.24 is due to Babai, Nisan and Szegedy, though our proof follows Raz’s simplification
[Raz00] of Chung’s proof [Chung90].

Lovasz and Saks [LovaszSa93] have observed that the log rank conjecture is related to a
conjecture in discrete mathematics concerning chromatic number and rank of the adjacency matrix.
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The original log rank conjecture was that C(f) = O(log rank(M(f))) but this was disproved by Raz
and Spieker [RazSpi95]. A comparison of rank and fooling set arguments appears in the paper by
Dietzfelbinger, Hromkovic and Schnitger [DietzfelbingerHrSc96].

In general, the complexity of computing C(f) and Ck(f) is not understood, and this may have
some connection to why it is difficult in practice for us to prove lower bounds on these quanti-
ties. It is also intriguing that the lower bounds that we do prove involve quantities such as rank
and fooling sets that are computable in polynomial time given M(f). (This is an instance of
the more widespread phenomenon of natural proofs encountered in Chapter 23.) In this regard,
it is interesting to note that the Discrepancy parameter is NP-hard to compute, but can be ap-
proximated within a constant multiplicative factor in the 2-player setting by a polynomial-time
algorithm [AlonNa06]. In contrast, computing the discrepancy in the 3-player setting seems very
hard (though no hardness results seem to appear anywhere); this may perhaps explain why lower
bounds are so difficult in the multiplayer setting.

One relatively recent area not mentioned in this chapter is quantum communication complexity,
where the parties may exchange quantum states with one another, see [Brassard04]. Interestingly,
some techniques developed in this setting [Sherstov07] were used to obtain new Ω(n1/(2k)/22k

)
lower bounds on the k-party communication complexity of the disjointness function [LeeSh07,
ChattopadhyayAd08], thus obtaining a strong separation of non-deterministic and deterministic
k-party communication complexity.

Exercises

13.1. Prove Lemma 13.5.

13.2. Prove that a single tape TM takes at least O(n2) to decide the language of palindromes
PAL = {xn · · ·x1x1 · · ·xn : x1, . . . , xn ∈ {0, 1}n , n ∈ N} of Example 1.1.

Hint:Suppose this could be decided by a TM that travels at most k times from
the (n/3)th position of the tape to the (2n/3)th position. Show that this implies an
O(k)-bit communication protocol for deciding equality of n/3-bit long strings.

13.3. If S(n) ≤ n, show that a space S(n) TM takes at least Ω(n2/S(n)) steps to decide the
language {x#x : x ∈ {0, 1}∗}.

13.4. Prove the second inequality of Theorem 13.8. That is, prove that for every f : {0, 1}n ×
{0, 1}n → {0, 1}, C(f) = O(log2 χ(f)).

Hint: Arbitrarily number the rectangles in the monochromatic tiling and let N =
χ(f). Define graphs GR, GC on {1, . . . , N} where {i, j} is an edge in GR (resp.,
GC) iff rectangles i, j share a row (resp., column). Let degR(·) and degC(·) denote
degrees in these graphs. At each step, the row player tries to look for a rectangle i
containing his input with degL(i) ≤ 3|GR|/4 and sends such an index i if it exists.
Both players then remove from GL, GC all vertices that are not neighbors of i.
Similarly, the column player tries to find a column j containing his input such that
degC(j) ≤ 3|GC |/4. We claim if either such an i, j can be found, it represents
progress— can you see why? Furthermore, can you show they will always find such
i, j? It may be helpful to note that in a N -vertex graph with minimum degree at
least N/2 + 1, each two vertices have a common neighbor.

13.5. Prove Lemma 13.10.

Hint: First, show that for every two matrices A,B, rank(A + B) ≤ rank(A) +
rank(B), implying that if A =

∑`
i=1 αiBi for rank-1 matrices B1, . . . , B` then
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rank(A) ≤ `. Then, use the fact that if A has rank at most ` then it has ` rows
such that all other rows are linear combination of these rows to express A as a sum
of ` rank-1 matrices B1, . . . , B` (the rows of the matrix Bi will be scalar multiples
of some row of A).

13.6. Show that if a function f has a fooling set of size S then the rank argument can be used to
give a lower bound of at least 1

2dlogSe.

13.7. Show that if M is 0/1 real matrix, and M ′ is the ±1 matrix obtained by applying the
transformation a 7→ (−1)a to the entries of M , then rank(M)−1 ≤ rank(M ′) ≤ rank(M)+1.

Hint:Use the fact that M ′ = J − 2M where J is the all 1’s matrix.

13.8. Consider x, y as vectors over GF (2)n and let f(x, y) be their inner product mod 2. Prove
using the rank method that the communication complexity is n.

Hint:Transform the problem to ±1 first and compute rank over the reals. Could
you prove this by taking rank in GF(2)?

13.9. Let f : {0, 1}n × {0, 1}n → {0, 1} be such that all rows of M(f) are distinct. Show that
C(f) ≥ log n.

Hint: Lower bound the rank.

13.10. For any graph G with n vertices, consider the following communication problem: Player 1
receives a clique C in G, and Player 2 receives an independent set I. They have to com-
municate in order to determine |C ∩ I|. (Note that this number is either 0 or 1.) Prove an
O(log2 n) upper bound on the communication complexity.

Can you improve your upper bound or prove a lower bound better than Ω(log n)? (Open
question)

13.11. Prove Lemma 13.23.

13.12. Prove that the randomized communication complexity of the equality function (i.e., R(EQ))
is at most O(log n). (Note that a randomized communication protocol is allowed to output
the wrong answer with probability at most 1/3.)

Hint: Use the fingerprinting technique encountered in Section 7.2.3.

13.13. (Karchmer-Wigderson games [karchmerW90]) Consider the following problem about com-
puting a relation. Associate the following communication problem with any function f :
{0, 1}n → {0, 1}. Player 1 gets any input x such that f(x) = 0 and player 2 gets any input
y such that f(y) = 1. They have to communicate in order to determine a bit position i
such that xi 6= yi. Show that the communication complexity of this problem is exactly the
minimum depth of any circuit that computes f . (The maximum fan-in of each gate is 2.)

13.14. Use the previous question to show that computing the parity of n bits requires depth at least
2 log n.

13.15. Show that the following computational problem is in EXP: given the matrix M(f) of a
Boolean function, and a number K, decide if C(f) ≤ K.

(Open since Yao [yao79]) Can you show this problem is complete for some complexity class?


