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Box 1. The Eureka effect

The picture (Figure I) generally appears simply as a set of gray and

black regions, without further meaning; the object represented is

hard to categorize without further cues. Following considerable

inspection, (or a single look at the ‘clue’ in Figure 1 overleaf), the

puzzle is solved, and, without further practice, observers directly

perceive a bearded figure. This effect is rapid, strong and long-

lasting, suggesting that significant top-down control determines our

conscious perception. Ahissar and Hochstein [21] found that a single

long exposure to a ‘pop-out’ stimulus enabled learning of a very

difficult detection task, based on brief and strongly masked

presentation of similar stimuli – a task that was almost never learned

without the Eureka enabling experience. Thus, it appears that similar

top-down control or guidance mechanisms influence both percep-

tual learning and conscious perception. An important difference

between these effects is that in the experiment, following the single

easy-case ‘Eureka’ exposure, hard-case perceptual learning was

enabled, but still required; no such training is needed for Figure I

here.
Perceptual learning can be defined as practice-induced

improvement in the ability to perform specific percep-

tual tasks. We previously proposed the Reverse Hier-

archy Theory as a unifying concept that links behavioral

findings of visual learning with physiological and

anatomical data. Essentially, it asserts that learning is

a top-down guided process, which begins at high-level

areas of the visual system, and when these do not

suffice, progresses backwards to the input levels, which

have a better signal-to-noise ratio. This simple concept

has proved powerful in explaining a broad range of

findings, including seemingly contradicting data. We

now extend this concept to describe the dynamics of

skill acquisition and interpret recent behavioral and

electrophysiological findings.

Throughout life our sensory receptors are continuously
bombarded by stimuli. This activation not only induces
perception, it also modifies our representation mechan-
isms, thereby affecting all subsequent perception. Recent
evidence shows that a large degree of perceptual plasticity
is retained in adulthood, with long-term manifestations
including adaptation, priming and perceptual learning.
Currently, these different phenomena are defined by their
behavioral characteristics and the manner in which they
are induced, rather than by their respective underlying
neural mechanisms.

This article focuses on perceptual learning, defined as
practice-induced improvement in the ability to perform
specific perceptual tasks (see [1] for a classic review and
[2] for recent overviews). We shall argue that what
typically limits naı̈ve performance is the accessibility of
task-relevant information rather than the absence of such
information within neuronal representations [3]. We shall
present the reverse hierarchy theory (RHT) of perceptual
learning asserting (i) that perceptual improvement lar-
gely stems from a gradual top-down-guided increase in
usability of first high- then lower-level task-relevant
information, and (ii) that this process is subserved by a
cascade of top-to-bottom level modifications that enhance
task-relevant, and prune irrelevant, information (see [4]
for a computational model applying a similar concept).

The relations between plasticity processes during
substantial practice and those dominating the first few
exposures, are not well understood. Only the first are
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typically referred to as perceptual learning, whereas the
latter are termed priming. Recent evidence suggests that,
at least when governed by top-down control, single
exposures (priming) can induce strong and long-lasting
effects that clearly change our perception (see Box 1),
suggesting that these might be the initial processes of
perceptual learning, as described below (TheEureka effect).
Opinion TRENDS in Cognitive Sciences Vol.8 No.10 October 2004
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Figure 1. A hint for ‘understanding’ the image in Box 1. A few lines draw attention to

those aspects that are essential for perceiving a bearded figure. Now return to Box 1

on the preceding page to see how this ‘clue’ has affected your perceptual system,

perhaps forever!
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A third phenomenon of perceptual plasticity is adap-
tation. This seems to be a more basic mechanism that is
not specific to the nervous system and is characteristic of
all biological systems. It differs from perceptual learning
in being induced by exposure to stimuli rather than by
task-specific practice. Thus, it is essentially a bottom-up
process, in which internal representations are modified in
response to the current distribution of external stimuli
[5,6]. Consequently, responses to unvarying stimuli are
reduced, inducing increased sensitivity to changes, or
novelty detection. Because perceptual training involves
exposure to stimuli and consequently adaptation, it is
difficult to study perceptual learning without inducing
adaptation processes, whose impact on task performance
is hard to discern (see discussion in [7] and an experi-
mental example of bias induced by adaptation in [8]).
Psycho-anatomy logic and the Reverse Hierarchy Theory

The term psycho-anatomy, coined by Julesz more than 30
years ago [9], implies that we can deduce from behavioral
findings information regarding the underlying anatomical
structures. In the visual modality, our knowledge of basic
representations is relatively broad, basedmainly on single
unit receptive field characteristics, and recently on
corroborations from fMRI studies, [10–12]. Particularly
well understood is the representation of oriented light or
dark bars and edges. In the primary visual cortex, V1,
single neurons are selective for orientation and retinal
position with relatively narrow tuning curves in these
domains (the ‘Simple’ cells of Hubel andWiesel, [13]). Both
spatial and orientation tuning curves are broader for
neurons at higher visual areas along the visual hierarchy.

This basic observation can be used to deduce the site of
neuronal modifications from learning generalization.
Namely, if we train subjects on a perceptual task using a
www.sciencedirect.com
set of stimuli whose orientation and retinal position are
fixed, then changing the position or orientation of the
stimulus would lead to activation of a non-overlapping
population of neurons at lower-level areas. Thus, if the
major bulk of plasticity underlying behavioral improve-
ment occurred at low-levels, improvement would not
transfer to these new stimulus conditions and subject
performance would be degraded towards initial levels,
requiring a process of re-learning. On the other hand, if
learning resulted from high-level modifications, it would
largely transfer to novel positions and orientations. These
possibilities are schematically illustrated in Figure 2 for
Simple and Complex V1 neurons [13], and higher-area
neurons (inferotemporal cortex, IT; [14]).

This psycho-anatomy logic has been used in many
psychophysical studies to deduce the underlying site of
plasticity from the degree of learning specificity to spatial
dimensions such as the trained eye [15], retinal position
and orientation (e.g. [16–19]). However, parallel studies
produced contradictory findings regarding learning speci-
ficity even when experiments seemed rather similar. For
example, Karni and Sagi [15] found remarkable speci-
ficity, including to the trained eye, whereas Schoups et al.
[20], using a very similar texture discrimination task,
found complete generalization across eyes.

We decided to study directly whether this variability
itself follows systematic rules. The task we used was
detecting the presence of an oddly oriented bar in an array
of homogenously oriented distractor bars [17–19,21,22], as
illustrated in Figure 3. Inmost of the stimuli that we used,
the orientation of the target greatly deviated from that of
the distracting bars, yielding effortless detection,
accompanied by the notion that the odd element ‘pops
out’ ([23]; see review in [24]). That is, with long exposures
(O250 ms), this task is trivial to begin with, and
performance (reaction time) is independent of the number
of distractor elements in the array. We made it difficult by
using brief exposures followed by a masking stimulus
(Figure 3). Under these conditions, task difficulty could be
controlled in several ways. Most frequently we manipu-
lated the functional stimulus-processing time by varying
the interval between stimulus and mask (stimulus-to-
mask onset asynchrony; SOA). With practice, the minimal
SOA required for threshold detection (e.g. achieving 80%
correct) was substantially reduced [17].

The orientation specificity of this improvement indeed
followed a consistent pattern: when stimulus detection
was made difficult by a brief processing time (short SOA),
small target/distractor orientation difference, increased
target position uncertainty, or a target presented farther
from fixation, improvement was slower and orientation
specific. By contrast, learning of easy cases was general
and transferred across orientations. This pattern was
found both across groups training under easy or difficult
conditions, respectively, and across easy and difficult
conditions within the same individuals. Thus, practicing
orientation detection with interleaved SOAs, observers
showed generalization for long (easy) SOAs and specificity
for short (difficult) SOAs. Moreover, when learning was
orientation specific, it was also position-specific, consist-
ent with the linkage of orientation and position specificity
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Figure 2. The psycho-anatomy logic and the visual hierarchy: specificity versus transfer in perceptual learning. A hierarchy of cortical areas progressively processes visual

information, representing first specific details of color, orientation, motion, 2D position and stereoscopic disparity. Higher level representations generalize over these

parameters and specialize in objects, categories and concepts. Schematic drawings of these levels are shown above. First, striate cortex ‘Simple’ and ‘Complex’ receptive

fields respond to specific orientations, (colors and line widths or spatial frequencies), with Simple cells being more specific for stimulus location (and perhaps less so for

spatial frequency) than Complex cells. Following intermediate processing levels, different regions of inferotemporal (IT) cortex represent basic shapes, and object categories.

These units generalize over the basic dimensions of the stimulus. If perceptual task training is to affect performance, it must modify representations at one or more of these

levels. If modification is at very specific lower level units, learning effects will not transfer to performance of tasks with stimuli of different color, orientation, etc, because the

neurons responding to these stimuli were not affected by training. On the other hand, if training-induced modification is at high levels, in broadly-tuned units, then learning

effects will transfer to new stimulus conditions. Thus, testing the degree of specificity or transfer of learning effects can inform us of the level of the training-induced neural

modification.
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Figure 3. Learning dynamics for detection of an oddly oriented bar. Ahissar and

Hochstein [17–19,21,22] focused on processes underlying improvement in detect-

ing presence of an oddly oriented bar in an array of homogenously oriented

distractor bars (a). Detection would have been effortless, except that the stimuli

were presented briefly (!250 ms) and quickly followed by a mask. Task difficulty

was controlled by varying stimulus-to-mask onset asynchrony (SOA). (b) With

practice, performance improved first for longer, then also for shorter SOAs. Early

learning for long SOAs transferred to new orientations, suggesting that training

first affects high-level generalized representations. When stimulus detection was

made difficult, by using short SOAs, a small target/distractor orientation difference,

or greater target position uncertainty and eccentricity, improvement was later and

both orientation- and position-specific, suggesting that later learning reflects top-

down guided low-level changes. This cascade of learning, from higher to lower

areas, for easier to more difficult conditions, reflects the Reverse Hierarchy of

perceptual learning.
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in receptive fields along the visual hierarchy [21]. A
similar easy–difficult specificity pattern was also found for
inter-hemifield and cross-dimensional transfer [25,26], as
well as for motion discrimination [27,28] (see also Box 2).

Following psycho-anatomy logic we concluded that easy
task conditions (with large signal-to-noise ratios) are
learned at higher cortical levels along the visual path-
ways, where receptive fields generalize across position
and orientation. Difficult conditions, on the other hand,
are learned at lower-levels where receptive fields are more
specific to both retinal position and orientation. This
scheme is illustrated in Figure 4.

Studying learning dynamics, we found that even
though trials with different levels of difficulty
(i.e. different SOAs) were presented in an interleaved
manner, easy conditions (long SOAs) were learned first,
and only after substantial improvement was achieved for
these cases, did improvement begin for more difficult
conditions (brief SOAs). Thus, in the temporal domain,
learning proceeds in a cascade, from easier to more
difficult conditions. From the psych-anatomy logic we
deduced that learning begins at high-level areas and
gradually progresses to lower-level areas when better
signal to noise is needed. This cascade has ecological
benefits, because high-level cortical representations are
ecologically meaningful, and reflect the perceptual
interpretation of the distal stimuli. However, their
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Figure 4. Reverse Hierarchy Theory. Initial vision at a glance depends on high-level

object and category representations built by implicit hierarchical processing [62]. In

this way, initial high-level learning transfers over basic stimulus parameters [21].

Later vision with scrutiny is a return to simple feature details available at low levels

[62]. Thus, later low-level learning is parameter-specific, being a low-level

modification by guided return down the Reverse Hierarchy [21].

Box 2. Transfer along a continuum

As found in our studies, training is more effective if subjects start

with easy conditions and gradually move to more difficult con-

ditions. The importance of beginning training with easy conditions

was first found by Pavlov. When Pavlov reinforced a dog’s salivation

following its seeing an ellipse but not following its seeing a circle

(Figure I, rightmost pair of stimuli), the dog could not avoid

generalization and salivated at sight of the circle, as well. Only by

using very elongated ellipses, and training along the continuum,

from left to right, was it able to achieve good performance for small

circle/ellipse differences. This phenomenon was subsequently

termed ‘transfer along a continuum’ (of different degrees of

difficulty).
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signal-to-noise ratio is poor, particularly with respect to
spatial aspects, because generalized object selectivity is
obtained in part by convergence across spatial parameters.

Learning is therefore attention driven, where attention
is the mechanism for choosing the relevant neuronal
population, by increasing its functional weight. It follows
that initial high-level learning must precede low-level
learning, as it provides the essential enabling stage for the
backward search process.

The Eureka effect

An extreme condition occurs when subjects are trained
only with difficult cases, so that they have no introductory
easy trials along which to learn. Under these conditions,
typically no learning occurs. However, a single exposure to
the stimulus (as it appears on the screen) suffices to
initiate an immediate learning process [21,29]. We termed
the impact of this single exposure, which enables subse-
quent learning the Eureka effect (see Box 1). In terms of
formal definitions, Eureka is a special case of priming. But
whether such cases are indeed manifestations of the same
underlying mechanisms is still unclear.

Theoretical and experimental challenges to RHT

The psycho-anatomy logic assumes a direct relationship
between typical receptive field properties and the area’s
general function. This concept has been questioned [30] on
grounds of cortical variability, claiming that although
average receptive field size and orientation tuning
broaden along the cortical hierarchy, substantial varia-
bility at any stage produces significant overlap between
areas, including presence of small receptive fields at
higher levels. Thus, even specific learning could stem from
high-level modifications (discussed in [31]). This criticism
in fact relates to the field’s lack of knowledge regarding the
exact relations between single receptive field properties
and the area’s computations (i.e. the neural code).
www.sciencedirect.com
Currently, psycho-anatomical assumptions go beyond
what has been directly substantiated. Still, the assump-
tion that average receptive field properties denote the
area’s functional resolution is sensible, particularly when
one assumes a population code. Moreover, the majority of
findings in the visual learning literature are naturally
accounted for by the RHT dynamic view.

An important RHT prediction is that perceptual
learning will be contingent on task-specific attention,
because the backward search for increased signal-to-noise
ratio is attention-driven. Many studies, using ‘pop-out’
detection [17,32], orientation and texture discrimination
[15,33], and Vernier acuity [34,35], are consistent with
this prediction. However, recent studies in the visual
[36,37] and tactile [38,39] modalities found that passive
stimulation can also improve discrimination abilities.

In the visual modality, Watanabe et al. [36] found that
when observers performed a difficult visual task near
fixation while also exposed to surrounding moving dots,
subsequent discrimination between the motion direction
to which observers were continuously exposed and other
motion directions was significantly improved. Thus,
observers improved in motion discrimination even though
the motion signal was not attended and had a sub-
threshold coherence level (5%). Namely, it had not even
been consciously perceived. Initial improvement was more
specific to the local direction of motion and to its retinal
position than subsequent improvement [40], suggesting a
bottom-up dynamics of modifications. Both character-
istics, namely bottom-up dynamics and no need for
attentional control, have the flavor of adaptation pro-
cesses (e.g. [41,42]). Such processes can lead to increased
sensitivity to changes around the massively exposed
stimuli (improved novelty detection). Still, the relations
between this form of plasticity and practice-induced
perceptual learning are not well understood.

It should be noted that RHT does not assert that there
are no bottom-up inducedmodifications, such as adaptation

http://www.sciencedirect.com
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processes. It asserts that practising a perceptual task
leads to a top-down cascade of weight retuning, which
underlies the major bulk of improvement. Experimental
evidence does suggest that when a task is performed,
top-down processes dominate plasticity [43].

Electrophysiological support for a top-down cascade

of learning

According to RHT, (successful) practice-induced plasticity
at high areas should occur earlier and faster, and therefore
be more prevalent and easier to detect than plasticity at
low cortical areas. Indeed, evidence both from single neuron
responses [44] and at larger scales, using fMRI [45], sug-
gests that rapid, Eureka-like, long-term learning (Box 1)
relates to modifications at higher-level visual areas
(e.g. inferotemporal cortex, IT). Being a large-scale theory,
however, RHT does not specifically predict the type of
modification one should expect at the level of single
neuron receptive field properties [46,47].

Several electrophysiological studies assessed training-
induced modifications at different levels along the visual
pathways and their basic findings are consistent with
RHT predictions. First, IT representations rapidly tune
towards task-relevant features and stimuli so that these
become more salient [48–50] following behavioral time
constants [51].

Second, according to RHT, task-related plasticity will
gradually reach lower-level cortical areas. Thus, for over-
trained monkeys, plasticity might reach V4 and sub-
sequently lower-level areas, perhaps as low as V1
(although this would not be typically expected; [18–19]).
Orientation discrimination is a task for which V1 is better
suited than IT. Following initial training with a large
orientation difference and modification of IT neurons,
subsequent improvement should rely on lower-level
neurons, with more plasticity in V4 than IT. This seems
to be the case: following training with orientation
discrimination, changes in IT receptive field properties
were not orientation-specific – and were related to the
behavioral context [52]. However, modifications in V4,
leading to narrower tuning curves for orientation, were
both orientation- and position-specific [30].

Evidence regarding training-induced plasticity in V1 is
somewhat mixed, but the variability itself is consistent
with RHT predictions that relate expected plasticity site to
the specific behavioral paradigm applied. Thus, Schoups
et al., [53] trained monkeys on orientation discrimination
to a level of expertise reaching just-noticeable differences
(JNDs) of about 0.5 deg. Behaviorally, learning was
position and orientation specific, accompanied by orien-
tation and position specific plasticity at V1; (orientation
tuning sharpened in neurons whose preferred orientation
wasw15 deg tilted from the trained one). Ghose et al. [54]
also trained orientation discrimination, but found no
evidence for V1 plasticity when applying the analysis of
Schoups et al. [53]. The apparent discrepancy between
these findings can be reconciled by RHT: Ghose et al.
introduced variability along an irrelevant dimension
(stimulus spatial frequency), inducing a large jitter in
stimulus position. As low-level neurons are more sensitive
to spatial parameters, unpredictable non-overlapping
www.sciencedirect.com
low-level neuronal populations would be needed for each
stimulus. Therefore, learning would not be expected to
proceed ‘so low’. Indeed, Ghose et al.’s monkeys never
reached the expertise of the Schoups et al. monkeys; their
asymptotic orientation JNDs were an order of magnitude
larger, as was their learning generalization. All these are
consistent with a higher-level plasticity site.

This comparison between monkey studies emphasizes
RHT’s prediction that the greater the stimulus variability
during training (particularly when randomized), the lower
the likelihood of low-level modification, achieving better
thresholds, and stimulus specificity. Similarly, learning
was generalized in humans practicing a difficult search
task, with target and distractors randomly switched
between trials, but attained thresholds were relatively
high [55], reflecting high-level modification sites. Note
that one can attain fine performance with reversed target
and distractors, but practice has to be conducted in
separate blocks [19].

The process of becoming an expert performer

Reverse Hierarchy Theory proposes the following complex
pattern of learning as one extensively practices a given
task and becomes an expert. Although the phases are
described discretely, the transition is probably gradual:

(1) Naı̈ve performers are governed by representations
at the ‘top’ of the visual hierarchy, whether the task
involves simple or complex perceptual attributes. When
these representations are insufficient, mistaken or illu-
sory, performance fails. ‘Naı̈ve performers’ are actually
common-sense experts, as their high-level representations
are highly trained for ultra-rapid visual categorization of
natural scenes. Indeed, Fabre-Thorpe et al. [56] found that
such categorization is extremely rapid (e.g. detecting an
animal in less than 150 ms) and cannot be further speeded
by training.

(2) Mildly-trained performers, who have been exposed
to a given task and context, show general improvement,
consistent with high-level modifications and apparent in
Eureka like phenomena, including establishment of top-
down guidance and enabling mechanisms [57,21,29].

(3) Highly-trained performers, who have had a great
deal of training experience, can manipulate the level they
access for this tasks’ performance. Under difficult con-
ditions (i.e. when a better signal-to-noise ratio is needed)
their performance is based on low-level representations
and is thus specific to low-level aspects (e.g. [18–23,57,58]).

Their ability to access low-levels reflects changes of the
integration properties of higher-level neurons, increasing
the weights of task-relevant inputs and decreasing the
weights (pruning) of inputs that are not informative for
the task at hand. Thus, the effective tuning properties of
these neurons are modified (V4 [30]; IT [50,59]) to improve
signal-to-noise ratio (see [4] for model).

The changes in weights occur in a staged manner,
beginning at the highest levels and gradually continuing
at lower and lower levels along the reverse hierarchy. Top-
down guidance is needed for these changes to occur. The
particular neurons that modify are those whose outputs
have previously been chosen as the relevant input to the
next higher level. Thus, a chain of modified neurons is
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circumstances, conscious vision must seek details of the scene in lower areas, depending on top-down guidance over activated pathways. Training for these tasks enables

subjects to perform this backward search more efficiently and to use the most appropriate level for the task on a trial-by-trial basis (dotted downward arrows). (b) Highly

trained subjects have modified receptive fields first at higher and then also at lower cortical levels. Experts are those whose higher level representations have been modified

by adding weight to appropriate inputs and pruning uninformative inputs (for the trained task). Performance can thus once again depend on higher, more generalizing, units.
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progressively established which integrates task-relevant
selected information at each level.

(4) Expert performers, who have had substantial
amounts of training, can base their performance on higher
levels again, even in difficult cases. As described above
(highly-trained performers) there is a gradual process of
modifications at lower and lower levels. Lower level
modifications affect not only the levels of modification
themselves, but also all higher levels that receive input
from these levels. Consequently, higher-level represen-
tations are gradually better and better tuned for perform-
ance of the task as they attain an improved task-related
signal-to-noise ratio. As there is always a preference for
accessing the highest level that has sufficient task-related
signal, higher-levels will be the basis for performance
again. These levels have again the advantage of being
more broadly tuned, because they are the outcome of
convergence of multiple components. The increased
weightings of informative inputs – at all cortical levels –
now bias higher-levels towards the trained domain, which
gains dominance compared with its emphasis in the
original naı̈ve distribution. A schematic illustration of
this concept is shown in Figure 5.

This process yields the special characteristics of experts’
perception. It is immediate and holistic on the one hand,
suggesting high-level representations. Yet the generaliz-
ation of their expertise to untrained conditions is limited,
consistent with lower-level plasticity [60]. According to
RHT, experts access high-levels again, but their high-
levels are now biased towards the trained stimulus
domain owing to the earlier top-down cascade of
modifications.
www.sciencedirect.com
The holistic nature of expert performance is captured
in the classical term ‘chunking’ – referring to a process
during which separate components gradually become a
single perceptual or cognitive entity. A classic example is
that of Morse decoders who gradually hear whole words
rather than single bits. A timely example is that of expert
video-game players who develop a spatially holistic mode
of performance [61]. For example, they can enumerate a
larger number of spatially distributed elements without
counting. Interestingly, improved performance from
video-game training occurred not only in the spatial
domain but also in the temporal domain: video-game
players had far less of an attentional blink than non video-
game players, outperforming them even for lag one.

RHT attributes chunking and effortless performance to
experts’ ability to rely on high-level representations again.
Even so, to explain the breadth of attentional changes
characterizing expert performance [61], it should be
further extended (see also Box 3).
RHT and perception

This article has focused on RHT and learning. However
learning is not an odd case of perception. Rather it reflects
the sequence of perception, attention and retention.
Hence, RHT is expected to apply to perception in general.
Specifically, learning begins at high-levels because these
are the first levels accessed by conscious perception.
Consequently, with brief exposures, we consciously per-
ceive the ‘gist of a scene’, but not its fine details. Perceiving
details requires access to lower levels, therefore more time
and scrutiny [62]. We here summarize RHT’s predictions
for search tasks,whichwerethe focusof our learningstudies.
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Box 3. Questions for future research

General questions:

(1) Perception involves different types of plasticity, yet the relations

between mechanisms underlying priming, adaptation and plasticity

are still not well understood. For example, what is the role of

attention in each type of plasticity?

(2) How fast can one learn? Is there an inherent limitation on rate of

improvement and does it depend on where learning occurs along

the cortical hierarchy?

(3) Simple training studies (including all of our own studies) involve

improved discrimination along a single dimension whereas experts

often learn complex relations. Our null assumption is that the learn-

ing processes are essentially similar. But it is still an open question

whether thesame learningprocesses dominate underboth conditions.

Open reverse hierarchy theory (RHT) questions:

(1) RHT proposes that practice-induced learning proceeds top-down.

Can we discover direct physiological evidence for this?

(2) Can RHT be extended to address more explicitly the interactions

between the ventral and dorsal visual streams?

(3) Learning involves an initial stage of getting used to the system,

and other subsequent complex attentional changes, which are currently

beyond the scope of RHT. Can RHT be extended to incorporate higher

levels, beyond those that are part of the defined ‘visual system’, to

include a more complete behavioral characterization?
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The main conceptual novelty of RHT in the context of
visual search is the prediction that the determining factor
of whether an odd element will effortlessly ‘pop out’ is its
ecological relevance rather than its physical simplicity.
This conclusion follows directly from the assumption that
high-level representations are those that are immediately
accessible to conscious perception. Because the function of
high-level representations is to facilitate identification of
ecologically relevant elements, those elements that are
well segregated at these levels, will tend to pop out [24].
Although this seems at odds with the notion that only
simple features pop out, it is highly consistent with the
accumulated findings of complex features and high-level
properties that in fact do pop out (reviewed in [24,62]).

So – why do simple features such as large orientation,
size and color differences pop out? First, they only do so
when they differ greatly from homogeneous distractors.
Second, RHT’s interpretation is that only those basic
features that are relevant for object identification will pop
out. Thus, a large orientation difference is important for
telling apart vertically compared with horizontally elon-
gated elements (e.g. horizontal cars versus vertical human
figures, illustrated at the high-levels of Figure 2), red from
green is important for segregating berries from their bush,
and so on. Thus features will pop out if they form an
ecologically relevant property, whether it is a simple
property such as color or size, or a complex or conjunction
property such as depth or shape or human face, classically
termed ‘emergent properties’. However, if the features or
feature-combinations are not behaviorally relevant, they
will have no (rapid) high-level segregated representation,
and one would need to search at lower levels to find
specific neuronal populations that respond to each aspect.

This interpretation predicts that searching for conjunc-
tions that require serial scrutiny requires access to low-
levels. This search would thus be hampered if activity at
low-levels were disturbed during this later top-down
scrutiny. By contrast, pop-out detection does not require
www.sciencedirect.com
re-access to lower-levels and would thus not be affected by
a later disturbance to low-level activation. Indeed, such
results were recently found [63,64] using repetitive
transcranial magnetic stimulation (rTMS) that disrupted
V1 activation 100–600 ms after stimulus presentation.
Simple pop-out detection was not affected, whereas
conjunction detection was significantly impaired. Recent
electrophysiological results also support this conclusion,
finding that behavioral pop-out is not correlated with
single unit selectivity in V1. Although V1 neurons are
selective to texture discontinuities, they are not more
selective to orientation pop-out (single feature) than to a
conjunction oddity (orientation and color) that does not
pop out [65]. Taken together, both the micro and the macro
scales are consistent with the concept that serial conjunc-
tion search and not parallel feature search, requires
top-down access to low-level neurons, as predicted by RHT.

Conclusion

Reverse Hierarchy Theory proposes a ‘neo-Gestalt’ view
of perceptual learning and of conscious perception in
general, incorporating current knowledge of the anatomy,
physiology and behavior of the visual system. RHT pre-
dicts that fine discriminations along simple dimensions
best coded at low-level areas, will be difficult to learn
because they require gradual back-tracking to neural
populations we typically do not bother to access. Never-
theless, training with these tasks provides us with a
window for studying basic mechanisms underlying the
processes of visual learning and perception.
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