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1 Motivation: log loss in online learning.

In the last lecture, we started to discuss the following model of online learning, in which
our goal is to minimize the total log loss:

Let X be the space of all possible outcomes in any time step. There are N experts from
whom we can consult. At each time step t = 1, . . . , T :

• Each expert i predicts pt,i, which is a distribution over all possible outcomes X.

• The master algorithm combines pt,i from all experts into a prediction qt, which is a
distribution over X.

• Observe xt ∈ X.

• We suffer a loss as − ln qt(xt).

Our goal is to come up with a master algorithm which has the following property:

−
T
∑

t=1

ln qt(xt) ≤ min
i

[

−
∑

t

ln pt,i(xt)
]

+ [small amount]. (1)

Take the case of horse racing as an example, we can think of each expert predicting the
probability that each horse will win. Another way to motivate this model is to consider cod-
ing theory. Suppose Alice wants to send Bob a file consisting of messages x1, . . . , xt, . . . xT ,
where xt ∈ X, the set of all possible messages. Alice can wait until she sees all messages,
which is an offline approach. Now we want to find an online method.

Consider there are N coding methods (experts). We want to combine them into a
compression algorithm that is as nearly optimal as possible for our file. Note that we don’t
have any statistical assumption on the distribution of xt, i.e., they can be arbitrary.

As we’ve discussed in defining relative entropy, if p(x) is the probability of x chosen from
X, then the optimal code length, i.e., the number of bits, is − lg p(x) for message x . If the
compression algorithm (expert) i believes pt,i is the distribution of xt over X, − lg pt,i(xt)
is the number of bits used by method i to encode xt. Similarly, our master algorithm uses
− lg qt(xt) number of bits to encode xt.

The total number of bits used by method i is −
∑

t lg pt,i(xt), and the total number of
bits used by our master algorithm is −

∑

t lg qt(xt). Our goal is to construct qt such that the
length of our coding scheme is at most the length by the best coding scheme plus some small
amount, as described in Eq. (1). Note that the master algorithm should be a deterministic
algorithm, so Bob can correctly decode the message in the same way as Alice encodes it.
This approach has a merit that it has no statistical assumption on the distribution of X,
and can perform almost as well as the best coding scheme. Hence, it is called “universal
compression”.



2 Bayes Algorithm

Although we have no statistical assumption on xt, in order to derive the process of con-
structing qt, we pretend that xt’s are generated by some random process. We can make this
assumption because the relevant data are not actually random, which allows us to perform
probabilistic calculation on them. From here, we introduce the following notations, e.g.,
we write pt,i(xt) = pi(xt|x

t−1
1 ) and qt(xt) = q(xt|x

t−1
1 ), where xt−1

1 denotes the sequence
x1, . . . , xt−1. This allows us to think of pt,i(xt) and qt(xt) as the conditional probability of
xt, given the occurrence of the events x1, . . . , xt−1.

Now pretend that we know the probability distribution of X, and xt is generated in the
following probabilistic process. First, one expert i∗ is chosen uniformly at random among
all experts, i.e., Pr[i∗ = i] = 1

N
. Then, we generate the sequence x1, x2, . . . , xT according

to pi∗ :
Pr[xt|x

t−1
1 , i∗ = i] = pi(xt|x

t−1
1 ). (2)

Then, qt can be constructed in the following manner. Let q(xt|x
t−1
1 ) = Pr[xt|x

t−1
1 ]. By

marginalization, we have

q(xt|x
t−1
1 ) = Pr[xt|x

t−1
1 ]

=
N
∑

i=1

Pr[i∗ = i|xt−1
1 ] · Pr[xt|x

t−1
1 , i∗ = i]

=
N
∑

i=1

Pr[i∗ = i|xt−1
1 ] · pi(xt|x

t−1
1 ).

We introduce a new notation,

wt,i = Pr[i∗ = i|xt−1
1 ].

We have, w1,i = Pr[i∗ = i|x0
1] = Pr[i∗ = i] = 1

N
. Note that wt+1,i = Pr[i∗ = i|xt

1] is
called posterior, since we are predicting the probability of choosing expert i after we see the
sequence of events. By Bayes rule,

wt+1,i = Pr[i∗ = i|xt
1]

=
Pr[i∗ = i] · Pr[xt

1|i
∗ = i]

Pr[xt
1]

.

Here, Pr[i∗ = i] is called prior, and Pr[xt
1|i

∗ = i] is the likelihood of the sequence. Since the
denominator Pr[xt

1] is a constant independent of i, we can further expand the equation by

wt+1,i ∝ Pr[i∗ = i] · Pr[xt
1|i

∗ = i]

= Pr[i∗ = i] · Pr[xt−1
1 |i∗ = i] · Pr[xt|x

t−1
1 , i∗ = i]

= Pr[i∗ = i|xt−1
1 ] · Pr[xt−1

1 ] · pi(xt|x
t−1
1 )

∝ wt,i · pi(xt|x
t−1
1 ).

This suggests that we can recursively compute wt+1,i as

wt+1,i =
wt,i · pi(xt|x

t−1
1 )

∑

i wt,i · pi(xt|x
t−1
1 )

. (3)
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In summary, we can calculate qt(xt) as

qt(xt) =
N
∑

i=1

wt,i · pi(xt|x
t−1
1 ). (4)

where wt,i is updated the way as (3) suggests.
This construction is known as the Bayes algorithm. If we view Bayes algorithm as an

algorithm for updating the weights wt,i of N experts, the update rule is

wt+1,i =
wt,i · pi(xt|x

t−1
1 )

normalization
.

An interesting question is how does Bayes algorithm relate to online learning with expert
advice, as we have seen before? We can think of the update rule for the weights as

wt+1,i ∝ wt,i · βloss(i). (5)

where β is a constant and loss(i) is 1 if expert i made a mistake and 0 otherwise. In the
log loss model, loss(i) = − ln pi(xt|x

t−1
1 ) and β = e−1, which yields the same update rule as

(3). In other words, Bayes algorithm is essentially the same form as the earlier algorithm.

3 Analysis of Bayes Algorithm

To prove that Bayes algorithm achieves the goal we previously stated in (1), we first extend
the analogy to the probability of an entire sequence by defining

q(xT
1 ) = q(x1)q(x2|x1)q(x3|x1, x2) . . .

=
T
∏

t=1

q(xt|x
t−1
1 )

=
T
∏

t=1

Pr[xt|x
t−1
1 ]

= Pr[xT
1 ].

which is the probability of the entire sequence. Similarly, pi(x
T
1 ) can be defined so that

pi(x
T
1 ) = Pr[xT

1 |i∗ = i].

Now we can rewrite the cumulative log loss of our master algorithm as:

−
T
∑

t=1

ln qt(xt) = −
T
∑

t=1

ln q(xt|x
t−1
1 ) = − ln

T
∏

t=1

q(xt|x
t−1
1 ) = − ln q(xT

1 ).

And the cumulative log loss of expert i is:

−
T
∑

t=1

ln pt(xt) = −
T
∑

t=1

ln pi(xt|x
t−1
1 ) = − ln

T
∏

t=1

pi(xt|x
t−1
1 ) = − ln pi(x

T
1 ).

3



To bound the cumulative log loss of the master algorithm, note that

q(xT
1 ) = Pr[xT

1 ]

=
N
∑

i=1

Pr[i∗ = i] · Pr[xT
1 |i∗ = i]

=
N
∑

i=1

1

N
· Pr[xT

1 |i∗ = i]

=
1

N

N
∑

i=1

pi(x
T
1 ).

Hence, we have

− ln q(xT
1 ) = − ln

(

1

N

T
∑

i=1

pi(x
T
1 )

)

≤ − ln
pi(x

T
1 )

N

= − ln pi(x
T
1 ) + lnN.

Since the above inequality holds for any i,

−
T
∑

t=1

ln qt(xt) = − ln q(xT
1 )

≤ min
i

(

− ln pi(x
T
1 )

)

+ ln N

= min
i

(

−
T
∑

t=1

ln pt,i(xt)

)

+ ln N

which shows that the master algorithm does no worse than the best expert plus ln N .
What is worth noting is that, in the context of universal compression, the same bound

can be achieved. For the obvious off-line algorithm, the number of bits needed to indicate
which coding scheme is the best is lg N , and the file can then be encoded in the best way.
Bayes algorithm achieves this identical bound while coding the stream of messages entirely
online.

To extend this model, we can set up the algorithm such that we choose Pr[i∗ = i] = πi,
where πi is a given prior distribution over the experts. In this case, we can obtain a similar
argument in the following form:

−
T
∑

t=1

ln qt(xt) ≤ min
i

[

−
T
∑

t=1

ln pt,i(xt) + ln
1

πi

]

.

4 Example: experts in the continuous space

Let X = {0, 1}, and the experts predict the probability p ∈ [0, 1], such that Pr[x = 1] = p

and Pr[x = 0] = 1 − p. Here, we have an infinite number of experts. We can apply a
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continuous analogue of Bayes algorithm, where the sum is replaced by integrals. Suppose
up to the first t rounds, we have observed h 1’s, i.e., h =

∑t
t′=1 xt′ . Recall (3), wt,p becomes

wt,p =
ph(1 − p)t−1−hdp
∫ 1
0 ph(1 − p)t−1−hdp

.

So the continuous version of equation (4) gives us

qt+1(1) =

∫ 1
0 ph(1 − p)t−h · p dp
∫ 1
0 ph(1 − p)t−hdp

=
h + 1

t + 1

=
# of 1’s + 1

# of 1’s + # of 0’s + 2
.

This is called Laplace smoothing. Note its difference to the naive Bayes algorithm, in which
this quantity is h

t
by applying the maximum likelihood estimation.

5 Switching experts

In the next class, we will consider the case of switching experts, i.e., the distribution of
X varies over the timeline t = 1, 2, . . . , T , and one particular expert is doing better than
others in a certain period of time. There are in total k number of switches such that each
switch corresponds to the entering of another period in which a new expert does a good job.
Our goal is to find out a master algorithm which performs almost as well as a sequence of
best experts, plus some small amount. However, the previous theorem cannot be directly
applied, since there is a large number of “experts” as in the original definition, each of
which corresponds to a sequence of k + 1 experts in this case. In fact, our algorithm should
compete against the best sequence of experts, assuming k is not too large.
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