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1 Recap

Last time we started talking about density estimation. The problem is established as fol-
lowing:

Given: a space X , where |X | < ∞
examples x1, x2, · · · , xm ∈ X , xi ∼ D
a set of features: f1, f2, · · · , fn, fj : X → R

Goal: Estimate density distribution D.

The solution using the Maximum Likelihood approach is to select a distribution from

Q =

{

q : q(x) =
exp(

∑n
j=1 λjfj(x))

Zλ

}

.

Note that these are called Gibbs Distributions. Among all distributions of this form, we
select the one of maximum likelihood:

max
q∈Q̄

m∑

i=1

ln q(xi).

Here Q̄ means the closure of Q, denoted in this way for technical reasons.
The solution using the Maximum Entropy approach is to select from

P =
{

p : Ep[fj] = Ê[fj ],∀j
}

the distribution of maximum entropy:

max
p∈P

H(p).

The Duality Theorem that we motivated (but didn’t prove completely) last time states
that the following are equivalent and any of the three uniquely defines q∗:

(1) q∗ = arg maxp∈P H(p)

(2) q∗ = arg maxq∈Q̄

∑m
i=1 log q(xi)

(3) q∗ ∈ P ∩ Q̄ (roughly equivalent to KKT conditions).



2 How to find q
∗

Now we need to develop some computational algorithm so as to find the solution q∗. From
some observations, we can determine that (2) will be the most useful because it is an
unconstrained optimization problem; technically we should be able to find the solution using
calculus, while (1) is a constrained optimization problem and will be more complicated. We
will use (3) to prove convergence later. (2) is equivalent to

min
q∈Q̄

−
1

m

m∑

i=1

ln qλ(xi)

where qλ(x) = egλ

Zλ
and gλ(x) =

∑n
j=1 λjfj(x). So we want to find λ to minimize

L(λ) = −
1

m

m∑

i=1

ln qλ(xi). (1)

Note that Eq. 1 is called the empirical log loss function and is a convex function of λ.

3 Algorithm

Even though the optimization is unconstrained and convex, it is still too hard to get the
solution analytically (by taking derivatives and setting them to zero). Therefore, we will
do so numerically. The roadmap is to get a sequence of λ1,λ2, . . . so that

lim
t→∞

(λt) = min
λ

L(λ).

So our algorithm will look like below:

1. Choose λ1 arbitrarily (e.g. set to zero)

2. for t = 1, 2, · · · compute λt+1 from λt.

The algorithm we present is called ”Iterative Scaling”. We will first scale and translate
features so that

fj : X → [0, 1].

Then replace fj by fj/n so that:
n∑

j=1

fj(x) ≤ 1.

Last we will add a feature f0 = 1 −
∑n

j=1 fj, so that we have the nice equality that

n∑

j=0

fj(x) = 1, for all x ∈ X .

This addition of f0 isn’t necessary but will make the math work better later.
Now we return to the problem how to compute λt+1 from λt. Recall our goal is to

minimize the difference ∆L = L(λt+1) − L(λt). So we will approximate this difference and
minimize it.
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4 Derivation of the Approximation

We let λ
′ = λt+1 and λ = λt. Note thatλ′

j is λj plus some small adjustment, which we can
formalize as:

λ′
j = λj + αj.

So we have

∆L = L(λ′) − L(λ)

=
1

m

m∑

i=1

[

ln

(

egλ(xi)

Zλ

)

− ln

(

eg
λ′ (xi)

Zλ
′

)]

=
1

m

m∑

i=1

[

(gλ(xi) − gλ
′(xi)) + ln

(
Zλ

′

Zλ

)]

=
1

m

m∑

i=1

(gλ(xi) − gλ
′(xi)) + ln

(
Zλ

′

Zλ

)

. (2)

Recall that

gλ(x) =

n∑

j=1

λjfj(x).

Therefore,

(gλ(xi) − gλ
′(xi)) =

n∑

j=1

(λjfj(xi) − λ′
jfj(xi)

= −

n∑

j=1

αjfj(xi).

So the first term of Eq. 2 becomes

−
1

m

m∑

i=1

n∑

j=1

αjfj(xi) = −
1

m

n∑

j=1

m∑

i=1

αjfj(xi) (interchange the summation order)

= −
1

m

n∑

j=1

αj

m∑

i=1

fj(xi)

= −
n∑

j=1

αjÊ[fj ].
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The second term that we need to deal with is

Zλ
′

Zλ

=

∑

x∈X

exp





n∑

j=1

λ′
jfj(x)





Zλ

=

∑

x∈X

exp





n∑

j=1

λjfj(x) +
n∑

j=1

αjfj(x)





Zλ

=
∑

x∈X

qλ(x) exp





n∑

j=1

αjfj(x)





≤
∑

x∈X

qλ(x)

n∑

j=1

fj(x) exp(αj) (Jensen’s Inequality and since exp() is convex)

=

n∑

j=1

eαj

∑

x∈X

qλ(x)fj(x)

=
n∑

j=1

eαjEqλ
[fj].

Now we can put the whole thing together and we have

∆L ≤ −

n∑

j=1

αjÊ[fj ] +

n∑

j=1

eαj Eqλ
[fj]

= −
n∑

j=1

αjÊj + ln





n∑

j=1

eαjEj





where we denote Êj = Ê[fj] and Ej = Eqλ
[fj ].

Now we have bounded the difference and can optimize it by taking the partial derivative
with respect to αj, which yields

∂

∂αj

= −Êj +
Eje

αj

∑n
j=1 Ejeαj

. (3)

Apparently solving for αj by setting Eq. 3 to zero would be a lot easier if not for the
denominator in the second term. But we also notice that if α′

j is a solution, then αj = α′
j +C

is also a solution, for any constant C. So we can choose C so that

n∑

j=1

Eje
αj = 1.

Therefore, setting Eq. 3 to zero gives

αj = ln

(

Êj

Ej

)

,

and we have finally marched to a method for approximately minimizing ∆L.
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5 Iterative Scaling Algorithm

Now our algorithm will look like below:

choose λ1 = 0
for t = 1, 2, · · · until convergence

for all j: λt+1,j = λt,j + ln

(

Ê[fj ]
Eqλt

[fj ]

)

.

We can also interpret the distribution over the samples instead of λ’s, if we let pt = qλt
.

Then we can write

pt+1(x) ∝ pt(x)
∏

j

(

Ê[fj]

Ept [fj]

)fj(x)

. (4)

This alternative formulation makes intuitive sense because it has the effect of adjusting the
distribution weight. In the end, we want to reach a point at which Ept [fj] = Ê[fj]. For
example, if Ê[fj] > Ept [fj], this means that we have underestimated the expected value of
feature j over the samples and would therefore like to increase the distribution weight of
those samples with high values for j. As in Eq. 4, the quotient of the expectations will be
> 1, so the weight adjustment component corresponding to j will be proportional to the
value of fj for each sample.

6 Proof of Convergence

Now let’s prove the convergence of the two probability distributions, i.e. pt → q∗. As
a side note, we should be aware that it is not sufficient to show that non-negative L is
strictly decreasing, because it can converge to some positive value. Here we will construct
an auxiliary function A mapping probability distributions over X to real numbers, that has
the following three properties:

(1) L(λt+1) − L(λt) ≤ A(pt) ≤ 0.

(2) A is continuous.

(3) A(p) = 0 ⇒ Ep[fj] = Ê[fj], ∀j.

If there exists such an auxiliary function, then we are done with the proof. Why? First, we
know that L ≥ 0 and never increasing (by property(1)), which implies

L(λt+1) − L(λt) → 0.

In addition, by property (1), A(pt) is squeezed between L(λt+1) − L(λt) and 0, and this
implies

A(pt) → 0.

Suppose that pt → p. Why does this imply p is optimal? By property (2), since A is
continuous,

A(p) = lim
t→∞

A(pt) = 0

And by property (3), this implies that p ∈ P . On the other hand, since each pt ∈ Q is a
Gibbs distribution, and pt → p, we have that

p ∈ Q̄.

5



Therefore,
p ∈ P, p ∈ Q̄ ⇒ p ∈ P ∩ Q̄ ⇒ p = q∗

(last equality by Duality Theorem).
This argument assumes that the pt’s have a limit, a fact which we need a little bit of

analysis or topology to prove. Although we brushed over this in class, for those who are
interested, here is how this can be proved. Suppose the sequence of pt’s does not converge
to q∗. Then there must exist a neighborhood R around q∗ such that an infinite number of
pt’s lie outside of R. The pt’s lie in the space of all probability distributions over the finite
set X. This is a compact space. Therefore, the infinite subset of pt’s outside of R must have
a subsequence which converges to some point p (this is a property of compactness). By the
same argument given above (slightly modified), p must be equal to q∗, a contradiction since
all of the points are outside of the neighborhood R around q∗. Therefore, the pt’s converge
to q∗.

Next we need to find such an auxiliary function, which upper-bounds ∆L. We can plug

αj = ln
(

Êj

Ej

)

back into Eq. 3 and we will have

∆L = L(λ′) − L(λ)

= −

n∑

j=1

Ê[fj] ln

(

Ê[fj ]

Eqλ
[fj]

)

+ ln










n∑

j=1

eαjEj

︸ ︷︷ ︸

= 1










= −
n∑

j=1

Ê[fj] ln

(

Ê[fj]

Ep[fj]

)

(p = qλ)

= −RE(Ê[fj] || Ep[fj]) = A(p).

Note that
∑n

j=1 Ê[fj ] = Ê[
∑n

j=1 fj] = 1 and
∑n

j=1 Ep[fj] = 1, i.e. both are valid probability
distributions over the feature set, hence conforming to the definition of relative entropy. And
because RE ≥ 0 and when RE = 0 ⇒ Ê[fj] = Ep[fj], we can check that A(p) satisfies the
properties of being an auxiliary function.

7 General Comments

1. The above proof was written for the case that we have a distribution over examples;
however it is common to have labelled data pairs (x, y) and the goal of estimating the
conditional probability Pr [y|x]. It turns out that one can apply similar ideas in this
case, essentially trying to maximize the entropy of Y |X given constraints derived from
data. This approach is called Logistic Regression. Therefore, Logistic Regression
is just a special case of Maximum Entropy.

2. If the true probability distribution is in the class of distributions that you are searching
over, maximum likelihood will eventually converge to the true probability; however,
ML can behave badly if the true distribution is not in that class and ill-defined. For
example, consider distributions over {0, 1} which are defined by the bias or proba-
bility of 1. Say the true distribution is given by p = 0.98, which we estimate using
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distributions in {0.01, 1}. So intuitively q = 1 should be the better estimate. However
ML will return 0.01, because the expected log loss is

−E[ln q] = 0.98 ln q − 0.02 ln(1 − q),

and if q = 1, then the second term is ∞. Therefore we see an important caveat of ML
due to the bad behavior of the log function at the end points.

8 Preview

Next lecture, we will talk about density estimation in an online setting. For example,
imagine you are betting on horses at the track. You want to estimate the probability of
each horse wining and translate these estimates into bets corresponding to the probability
distribution over horses. Before each race, you would combine the probability estimates of
the experts into a single aggregated distribution. One horse will win the race and then you’ll
move on and repeat the expert advice pooling for the next race. So with the probability
estimates from a panel of experts, you want to perform as well as the best expert. Now the
loss function will be different.

The problem can be formalized as below
for t = 1, 2, · · · , T

each expert i chooses a distribution pt,i overX
master combines into qt

observe xt ∈ X
loss = − ln qt(xt)

We want to minimize the accumulated loss relative to the loss of the best expert so that

−
T∑

t=1

ln qt(xt) ≤ min

[

−
∑

y

ln pt,i(xt)

]

+ a small amount

It turns out, as we will see next time, this problem is closely related to investment theory
and coding theory.
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