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Summary. In this lecture we study the problem of estimating a probability density func-
tion from random (unlabeled) samples distributed according to this density. This task is
known as probability modeling or density estimation. We will introduce and relate two
standard methods called maximum likelihood and maximum entropy.

1 Conditional Density Estimation

Although it will not be our focus for this lecture, let us briefly discuss what is known as
conditional density estimation. Here, we are given random samples (x, y) distributed ac-
cording to some unknown distribution and our goal is to estimate the conditional probability
Pr[y|x]. There are two approaches towards this problem:

• Discriminative approach in which we use tools from learning theory to compute a
hypothesis that models the conditional probability distribution Pr[y|x] up to a small
error.

• Generative approach in which we estimate the probability distribution Pr[x|y]
separately for every y. For instance, y could represent the attribute “gender” and x
could represent the attribute “height”. In this case, we would learn the distribution
of heights separately for women and men.

Recall Bayes’ Rule,

Pr[y|x] =
Pr[x, y]

Pr[x]
=

Pr[x|y] Pr[y]

Pr[x]
.

It implies that these two approaches are in principle equivalent. The term Pr[x] can be
ignored since it is constant with respect to y. The probabilities Pr[y] can be estimated easily
by the marginal distributions derived from the samples. However, the two approaches do
have different strengths in practice.

2 Maximum Likelihood

Suppose we are given examples x1, x2 . . . , xm drawn from a probability distribution D over
some discrete space1 X. In the end, our goal is to estimate D by finding a model which fits
the data, but is not too complex. As a first step, we need to be able to measure the quality
of our model. This is where we introduce the notion of maximum likelihood.

To motivate this notion suppose D is distributed according to one out of two possible
density functions q1 and q2. Intuitively, if we observe that q1(xi) is typically much larger
than q2(xi), we will tend to conclude that D is distributed according to q1.

1Even though what we discuss generalizes straightforwardly to the continuous setting.



In general, we consider a (possibly infinite) set of density functions Q. For a particular
q ∈ Q, we call

m
∏

i=1

q(xi) (1)

the likelihood of x1, . . . , xm under q. Notice, if the examples xi are independent, then this
term is precisely the probability of generating the sequence x1, . . . , xm.

Since the logarithm is strictly monotonically increasing and

log

m
∏

i=1

q(xi) =
∑

i

log(q(xi)), (2)

we know that maximizing (1) is equivalent to maximizing (2) which in turn is equivalent to
minimizing

∑

i

− log(q(xi)). (3)

We think of (3) as a “loss function” that we call the log loss of q on x1, . . . , xm. Let us also
introduce the true risk of q as

E
x∼D

[− log q(x)] = −
∑

x∈X

D(x) log q(x). (4)

The last term is a quantity sometimes called the cross entropy of D and q. It only differs
by an additive constant from the relative entropy of D and q. Hence, it is minimized when
D = q (as we showed using Lagrange multipliers). Indeed,

−
∑

x∈X

D(x) log q(x) =
∑

x∈X

D(x) log
D(x)

q(x)
−
∑

x∈X

D(x) log D(x)

= RE(D||q) + H(D),

where RE denotes relative entropy and H the Shannon entropy.

Example 1. Suppose we want to estimate the bias of a coin from a sequence of m coin
tosses. In this case, Q is the set of all probability distributions supported on {HEADS,TAILS}.
If we observe HEADS h times, then the likelihood of the sequence under a probability dis-
tribution q is equal to qh(1 − q)m−h where we identified q with the probability of HEADS.
This term is maximized for q = h

m
.

Example 2. Suppose a biologist wants to derive a probabilistic model of where on a given
map X a particular species lives. The biologist is given (a) presence records x1, . . . , xm of the
species according to the population distribution, and (b) environmental variables f1, . . . , fn

describing the map with attributes such as “altitude”, “average rain fall” and so forth. To
model these additional variables we extend our formal setup as follows.

Formal Setup. Let us consider a large but finite set X of cardinality N . Our observation
is x1, . . . , xm ∼ D where D is some unknown distribution supported on X. Furthermore,
we are given features f1, . . . , fn where each fj : X → R is a function. Our goal is to estimate
D.
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The first way to do this would be to maximize likelihood. To do this, we need to fix a
domain Q. One common choice is to let Q be the set of all density functions q of the form

q(x) =
exp

(

∑n
j=1

λjfj(x)
)

Zλ

, (5)

where λj ∈ R and Zλ is a normalization constant that depends on λ. This family of density
functions is often called the exponential family. We will refer to distributions of this form
as Gibbs distributions. Now, the maximum likelihood is

Maximize

n
∑

i=1

log q(xi) (6)

subject to q ∈ Q̄,

where Q̄ denotes the closure of Q (that is, Q together with all its limit points).

3 Maximum Entropy

Another way of approaching the above problem is to use the method of maximum entropy.
Here, we start with the fact that we can approximate the true expectation ED[fj ] of each
feature fj by its empirical average taken over the given samples, i.e.,

Ê[fj ] =
1

m

∑

i

fj(xi). (7)

That is, we expect ED[fj] ≈ Ê[fj] for all j. This leads to the idea of finding a distribution
p which satisfies the constraint

Ep[fj] = Ê[fj ] (8)

for every j. There are typically many distributions satisfying these constraints. Among
all such distributions we choose the one which minimizes its distance from the uniform
distribution U in terms of relative entropy,

RE(p||U) =
∑

x

p(x) log
p(x)

1/N

= log N +
∑

x

p(x) log p(x)

= log N − H(p).

Since log N is just a constant, we are looking for the distribution p which maximizes the
Shannon entropy H(p). Once we define

P = {p | ∀j : Ep[fj] = Ê[fj ]},

the maximum entropy can be written as

Maximize H(p) (9)

subject to p ∈ P.
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4 Duality between Maximum Entropy and Likelihood

For the setup we have chosen previously, one can use convex programming duality to argue
that (6) and (9) do have unique optima that coincide.

Theorem 1. Let q∗ be a probability distribution. Then, the following are equivalent:

1. q∗ = arg maxp∈P H(p),

2. q∗ = arg maxq∈Q̄

∑

i log q(xi),

3. q∗ ∈ P ∩ Q̄.

Furthermore, any of these statements uniquely determines q∗.

We will not prove this theorem. However, we quickly provide some intuition for why it
is true. For this purpose, let us consider the Lagrangian relaxation of (9), i.e.,

L =
∑

x∈X

q(x) log q(x) +
n
∑

j=1

λj

(

Ê[fj] −
∑

x∈X

q(x)fj(x)

)

+ γ

(

∑

x∈X

q(x) − 1

)

. (10)

The primal variables are q(x) for x ∈ X, while the dual variables are λj and γ. Setting

0 =
∂L

∂q(x)
= 1 + log q(x) −

∑

j

λjfj(x) + γ

gives us

q(x) =
exp(

∑

j λjfj(x))

eγ+1
. (11)

Here, eγ+1 takes the place of the normalization constant Z in (5). So, we recognize that
the optimal solution to (9) must in fact define a Gibbs distribution.

On the other hand, upon substituting (11) back into (10), we get

L =
∑

x∈X

q(x)





n
∑

j=1

λjfj(x) − log Z



−

n
∑

j=1

λj

∑

x∈X

q(x)fj(x) +

n
∑

j=1

λjÊ[fj ]

= − log Z +
1

m

n
∑

j=1

λj

m
∑

i=1

fj(xi)

=
1

m

m
∑

i=1





n
∑

j=1

λjfj(x) − log Z





=
1

m

m
∑

i=1

log q(xi),

where q is as in (11). In other words, at optimality the Lagrangian simplifies to the objective
function in (6) up to a constant multiple.
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