
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #14
Scribe: Chong Wang March 26, 2008

1 Review of Last Lecture

Recall the online learning model we discussed in the previous lecture:
N = # experts
For t = 1, 2, . . . , T rounds:

1) each expert i, 1 ≤ i ≤ N , makes a prediction ξi ∈ {0, 1}
2) learner makes a prediction ŷ ∈ {0, 1}
3) observe outcome y ∈ {0, 1} (a mistake happens if ŷ 6= y)

With this framework in hand, we investigated a particular algorithm, Weighted Majority

Algorithm (WMA), as follows:
N = # experts
Initially wi = 1, 1 ≤ i ≤ N
For t = 1, 2, . . . , T rounds:

1) each expert i, 1 ≤ i ≤ N , makes a prediction ξi ∈ {0, 1}
2) calculate q0 =

∑

i:ξi=0
wi and q1 =

∑

i:ξi=1
wi

3) learner makes a prediction ŷ =

{

1 if q1 > q0

0 else
4) observe outcome y ∈ {0, 1} (a mistake happens if ŷ 6= y)
5) ∀i, if ξi 6= y, then wi ← wiβ, where β ∈ [0, 1].

For WMA, we have the following theorem:
Theorem 1 For WMA, we have

(#mistakes of learner) ≤ aβ(#mistakes of the best expert) + cβ lg N,

where

aβ =
lg(1/β)

lg(2/(1 + β))
, cβ =

1

lg(2/(1 + β))
.

Now, let’s take a deep look at aβ . It is not difficult to see that aβ ≥ 2. This means, if
the best expert makes more than 25% mistakes, this bound becomes trivial, since random
guessing has 50% chance to be correct. So we really want aβ to be close to 1 and introducing
randomness is one of the ways to go.

2 Randomized Weighted Majority Algorithm (RWMA)

Different from WMA, the Randomized Weighted Majority Algorithm (RWMA) predicts the
outcome in a random way. The predictions made by the learner are randomized. Let
W =

∑

i wi = q0 + q1, RWMA predicts as

ŷ =

{

1 with probability q1

W

0 with probability q0

W
,

where RWMA computes the fraction of the experts predicting positive or negative, and
predicts randomly according to that fraction. This is also equivalent to choosing expert i
with probability wi/W , and predicting what that expert says.

The following theorem states the upper bound of the expected number of mistakes of
RWMA.
Theorem 2 For RWMA, we have

E[#mistakes of learner] ≤ aβ(#mistakes of the best expert) + cβ ln N,

where

aβ =
ln(1/β)

1− β
, cβ =

1

1− β
.

We note that the expectation is taken over the randomization of the learning algorithm.
All the others are the same as WMA and not random. The good thing here is that aβ → 1
when β → 1. This means the expected number of mistakes will not be much larger than
the best expert. We also note cβ → ∞ when β → 1. We will discuss how to select β for
tradeoff.
Proof : For a particular round t, 1 ≤ t ≤ T , let

` = probability of the learner making mistakes =

∑

i:ξi 6=y wi

W
.

Then,

Wnew =
∑

i:ξi 6=y

wiβ +
∑

i:ξi=y

wi = `Wβ + W (1− `) = W (1− `(1− β)).

Let `t be the probability of the learner making mistakes on round t. Considering all T
rounds, we obtain an upper bound for Wfinal,

Wfinal = N

T
∏

t=1

(1− `t(1− β))

≤ N

T
∏

t=1

exp (−`t(1− β)) (according to 1− x ≤ e−x)

= N exp

(

−(1− β)
T
∑

t=1

`t

)

.

Let LA =
∑T

t=1
`t = E[#mistakes of the learner]. Now let Li be the number of mistakes

made by expert i. We have

βLi ≤Wfinal ≤ N exp (−(1− β)LA) .

Solving for LA, we have, ∀i
LA ≤

Li ln(1/β) + ln N

1− β
.

This means

LA ≤
mini Li ln(1/β) + ln N

1− β
= aβ min

i
Li + cβ ln N. �

2

Figure 1: Comparisons of WMA, RWMA and an improved algorithm.

The choice of β: suppose we know the best expert makes no more than K mistakes,
that is mini Li ≤ K. Without the proof, we set

β =
1

1 +
√

2 lnN
K

.

Then, we have
LA ≤ min

i
Li +

√
2K ln N + ln N.

This bound can be further improved if we select a better prediction strategy. Figure 1
shows how we can improve the algorithm. The horizontal axis is the fraction of the experts
predicting positive, q1/W , and the vertical axis is the probability of ŷ = 1. So the blue curve
describes the WMA, where, if q1/W > 1/2, Prob[ŷ = 1] = 1, otherwise Prob[ŷ = 1] = 0.
The green curve describes the RWMA, where Prob[ŷ = 1] = q1/W . If we choose the red
curve between WMA and RWMA, we can potentially improve the bound.

After carefully designing the prediction strategy, we can have

LA ≤ min
i

Li +
√

2K ln N +
lg N

2
.

So if we have an perfect expert (K = 0), then the expected mistakes will be less than
(lg N)/2 (see homework).

Now suppose mini Li ≤ K = rT . Here r can be thought of as the rate at which the best
expert makes mistakes. We have

LA

T
≤ min

i

Li

T
+

√

r lnN

T
+

lg N

2T
.

Here are some observations and intuitions. As T →∞,
√

r ln N

T
→ 0 and

lg N

2T
→ 0.

This means the learner will eventually behave like the best expert as more and more rounds
happen. Furthermore,

convergence rate ∼
{

O(1/T) if r = o(1)

O(1/
√

T) otherwise.

3

We can almost always choose r to be 1/2, since we can have one expert always predict 1,
another expert always predict 0. The number of mistakes of one of them must be no more
than T/2. Thus, setting r = 1/2, we have

LA

T
≤ min

i

Li

T
+

√

ln N

2T
+

lg N

2T
.

Finally, let’s see why we do not lose anything by allowing the data to be non-random.
Assume that all the experts predict at random and the outcomes are also random:

ξi =

{

1 with probability 1/2
0 with probability 1/2

y =

{

1 with probability 1/2
0 with probability 1/2.

For any algorithm A, it is easy to see E[LA] = T/2, since no matter what the algorithm
predicts, the probability of being right is 1/2. Similarly, we have E[Li] = T/2. Now let’s
look at mini Li. We note that it is a random variable, the expectation of mini Li can be
shown to be

E

[

min
i

Li

]

≈ T

2
−
√

T ln N

2
.

This means, for any learning algorithm,

E [LA] & E

[

min
i

Li

]

+

√

T ln N

2
.

Note this is the lower bound of E [LA]. If T is large, this lower bound is quite close to the
upper bound of unrandomized experts and outcomes even up to constants. Thus, RWMA
is very close to the best possible and what’s more, the case of random experts is actually
the worst case.

3 Perceptron Algorithm

We are going to discuss the Perceptron algorithm. Although it is a very old algorithm, it is
still very effective and useful. Consider the online learning algorithm we discussed before.
Can we use a combined result from several experts, instead of a single best expert?

To better describe the Perceptron algorithm, we change our notations as follows:
N = # experts
For t = 1, 2, . . . , T rounds:

get xt ∈ {−1,+1}N
learner predicts ŷt ∈ {−1,+1}
observe the outcome yt ∈ {−1,+1}.

We note that each component of xt can be viewed as the prediction of an expert. However,
in the Perceptron algorithm, we allow these to be any real value, i.e. xt ∈ R

N .
We assume there is some weighted combination of experts that gives perfect predictions.

That is we assume that ∃u ∈ R
N , ∀t, yt = sign(u · xt) (i.e. yt(u · xt) > 0). This means

the examples (xt, yt) are linearly separable. In fact, we allow some of the experts to have
negative weights. Figure 2 shows the idea.

4

Figure 2: The separating hyperplane

Figure 3: The Perceptron algorithm

Now we introduce the framework of learning the hyperplane in Figure 2. The algorithm
works by maintaining its own weight vector wt. In general, we will consider algorithms with
the following structure:

Initialize w1

for t = 1, 2, · · · , T
predict ŷt = sign(wt · xt)
update wt+1 = F (wt,xt, yt).

The key idea of the framework is how we choose the update function F . Now we begin
to introduce the Perceptron algorithm.

Initialize w1 = 0

update:
if ŷt 6= yt, where ŷt = sign(wt · xt)

wt+1 = wt + ytxt

else wt+1 = wt.
Figure 3 gives a geometrical explanation of the Perceptron algorithm. If the (xt, yt) (in

Figure 3, yt = 1) is misclassified, adding ytxt to wt moves wt to the direction which is likely
to classify (xt, yt) correctly next time.

Without loss of generality, we assume

• There is a mistake in every round so that T = # mistakes. This is because if on a
certain round there is no mistake, then the Perceptron algorithm does nothing.

5

• ||xt||2 ≤ 1. This is because the value of sign(·) will not be affected by this normaliza-
tion.

Furthermore, with loss of generality, we assume that there exists

u, δ > 0

s.t. ||u|| = 1, yt(u · xt) ≥ δ > 0.

In other words, we assume the data are linearly separable with margin at least δ.
Theorem 3 Under the assumptions above, T = # mistakes, we have

T ≤ 1

δ2
.

Proof : First, we define

Φt = cos (angle between u and wt) =
wt · u
||wt||2

≤ 1.

Step 1 : Prove wT+1 · u ≥ Tδ.
Proof :

wt+1 · u = (wt + ytxt) · u
= wt · u + yt(u · xt).

According to our assumption, yt(u · xt) ≥ δ. Applying repeatedly, we have wT+1 · u ≥
w1 + Tδ. Since w1 = 0, we obtain wT+1 · u ≥ Tδ.

Step 2 : Prove ||wT+1||22 ≤ T .
Proof :

||wt+1||22 = ||wt + ytxt||22
= (wt + ytxt) · (wt + ytxt)

= ||wt||22 + 2ytwt · xt + y2
t ||xt||22.

Since the algorithm makes a mistake at each round, we have ytwt ·xt ≤ 0. Also, we assume
||xt||2 ≤ 1, then y2

t ||xt||22 ≤ 1. Thus

||wt+1||22 = ||wt||22 + 2ytwt · xt + y2
t ||xt||22 ≤ ||wt||22 + 1.

Applying repeatedly, we have ||wT+1||22 ≤ ||w1||22 +T . Since w1 = 0, we obtain ||wT+1||22 ≤
T .

Now considering both results from steps 1 and 2, we know

1 ≥ ΦT+1 =
wt · u
||wt||2

≥ Tδ√
T
⇒ T ≤ 1

δ2
. �

Finally we talk a little about the VC-dimension of hyperplanes with margin at least δ.
LetH be the concept space and MA(H) be the number of mistakes made by A when learning.
In the previous lecture, we proved that, for a deterministic online learning algorithm A,

VC-dim(H) ≤ min
A

MA(H).

Since this is for any A, this also applies to the Perceptron algorithm. This means,

VC-dim(H) ≤ # mistakes by the Perceptron algorithm

≤ 1

δ2
.

Thus, the VC-dimension of hyperplanes with margin at least δ is at most 1/δ2.

6

