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In the previous lecture, we were introduced to the SVM algorithm and its basic moti-
vation for use in classification tasks. In this lecture we will see how to actually compute
a largest margin classifier, and touch upon how to lift the restrictive assumption of linear
separability of the data.

Review of SVM

Recall that SVM’s try to find a large margin linear classifier for data labeled + or − lying
in R

n. Formally, if we have m examples xi ∈ R
n with label yi, then the SVM algorithm

outputs v ∈ R
n satisfying the following program:

max δ

s.t. ‖v‖ = 1
∀i : yi (v · xi) ≥ δ (1)

SVM’s are designed to explicitly maximize the margin δ, whereas boosting happens to do
so accidentally. This indicates that the two algorithms may be related, and a summary
of their similarities and differences is tabularized below. The column labeled Boosting
requires explanation. The set of all weak hypotheses are denoted by h1, . . .. We replace
each example x by the vector of predictions of the weak hypotheses h1(x), . . . ,; these are its
only relevant features for boosting. The final hypothesis output takes a weighted majority
vote of the different weak hypotheses. These non-negative weights, scaled down to sum to
1, are denoted by a1, . . ..

SVM Boosting
example x ∈ R

n h(x) = 〈h1(x), . . .〉
‖x‖2 ≤ 1 ‖h(x)‖∞ �= maxj |hj(x)| = 1

finds v ∈ R
n weights a = 〈a1, . . .〉 on weak hyp

‖v‖2 = 1 ai ≥ 0,
∑

i ai = 1 =⇒ ‖a‖1 = 1

predicts sign (v · x) sign
(∑

j ajhj(x)
)

= sign (a · h(x))

margin y (v · x) y
∑

j ajhj(x) = y (a · h(x))

Computing the SVM hypothesis

We describe how to solve the optimization problem given in (1). We begin by rewriting (1)
as follows

max δ

s.t. ‖v‖ = 1

∀i : yi

(v
δ
· xi

)
≥ 1. (2)



Letting w �= v
δ , we get the relation ‖w‖ = 1

δ (using ‖v‖ = 1). Hence our objective is
to minimize w subject to the SVM constraints bi(w) ≥ 0, where bi(w) �= yi (w · xi) − 1.
Hence our task reduces to solving

min
1
2
‖w‖2

s.t. ∀i : yi (w · xi) ≥ 1. (3)

Following standard techniques, we form the Lagrangean of the above optimization prob-
lem by linearly combining the objective function and the constraints

L(w,ααα) �=
1
2
‖w‖2 −

m∑
i=1

αi [yi (w · xi) − 1] . (4)

The Lagrangean is useful because it converts the constrained optimization task in (3) to
the following unconstrained one:

min
w

max
ααα≥0

L(w,ααα). (5)

Indeed, (5) is the value of a game with two players, Mindy and Max, where Mindy goes
first, choosing w ∈ R

n, and Max, observing Mindy’s choice w, selects ααα ∈ R
n
+ to maximize

the resulting value of (5); Mindy, aware of Max’s strategy, makes her initial choice to
minimize (5). If Mindy’s choice of w violated any constraint bi(w) ≥ 0, Max could choose
αi sufficiently large to make (5) unbounded. If no w obeying all the constraints in (3)
existed, both (3), (5) would be ∞. Otherwise, Mindy ensures bi(w) ≥ 0 for each i, and Max
chooses αi = 0 whenever bi(w) were positive, so that αibi(w) = 0 for every i. Thus, for
w obeying all constraints, L(w,ααα) = 1

2‖w‖2 +
∑

i αibi(w) = 1
2‖w‖2, and Mindy’s strategy

boils down to solving (3).

Some minimax theory

Before computing (5), we consider the dual game where Max goes first. Even if Mindy
ignores Max’s move and plays the same w in the dual as she would in the primal, she would
ensure that the value of the dual does not exceed that of the primal. It follows

max
ααα≥0

min
w

L(w,ααα) ≤ min
w

max
ααα≥0

L(w,ααα).

Minimax theory tells us, for a large class of functions L, the values of both games are in fact
equal. One such class of immediate relevance to us is where both arguments of L belong
to a convex domain, L is convex in its first argument, and concave in the second. The
Lagrangean formed in (4) has these properties, and hence equality holds for our games.

Let w∗,ααα∗ be optimal choices of Mindy and Max for the primal and dual games, resp.

w∗ �= arg min
w

max
ααα≥0

L(w,ααα) (6)

ααα∗ �= arg max
ααα≥0

min
w

L(w,ααα) (7)
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We can derive the following chain of inequalities

L(w∗,ααα∗) ≤ max
ααα≥0

L(w∗,ααα)

= min
w

max
ααα≥0

L(w,ααα) (by (6))

= max
ααα≥0

min
w

L(w,ααα) (minimax theory)

= min
w

L(w,ααα∗) (by (7))

≤ L(w∗,ααα∗).

Since the first and last terms are the same, equality holds on all lines. As a consequence we
obtain the following facts

w∗ = arg min
w

L(w,ααα∗) (8)

ααα∗ = arg max
ααα

L(w∗,ααα) (9)

showing that (w∗,ααα∗) is a saddle point of the function L. Since L(·,ααα) is convex, the value
of w minimizing L(w,ααα) for a fixed ααα is obtained by setting derivatives to zero. Eq (8) now
implies

∀j :
∂L(w∗,ααα∗)

∂wj
= 0. (10)

From our previous discussions and (6), we know that w∗ obeys all constraints, and α∗
i bi(w)

is always zero

∀i : bi(w∗) ≥ 0
α∗

i bi(w
∗) = 0. (11)

Conditions (10) and (11), together with the nonnegativity constraints α∗
i ≥ 0 are known as

the Karush, Kuhn, Tucker (KKT) conditions, and they characterize all optimal solutions.
Note that our discussions show that any optimal solution satisfies the KKT conditions.
Showing that the converse holds will be a homework problem.

We return to solving the optimization task for SVMs. Recall that it suffices to compute
the value of the dual game. As discussed before, the value of w minimizing L(w,ααα) for
fixed ααα can be obtained by setting the derivative to zero:

∀j :
∂L

∂wj
= wj −

∑
i

αiyixij = 0

=⇒ w =
∑

i

αiyixi. (12)

Plugging the expression for w into L, the value of the game is given by

max
∑

i

αi − 1
2

∑
i,j

αiαjyiyj (xi · xj)

s.t. ∀i : αi ≥ 0

3



Figure 1: Data in R
2 that is not linearly separable
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The above program can be solved by standard hill-climbing techniques which will not
be discussed. If ααα∗ solves the above program, (10) and (12) imply that w∗ =

∑
i α

∗
i yixi

is the SVM hypothesis. The KKT condition (11) implies that α∗
i is non-zero only when

yi (w∗ · xi) = 1 i.e., (xi, yi) is a support vector. Hence the SVM hypothesis is a linear
combination of only the support vectors. By a homework problem, if there are k support
vectors, the generalization error of the classifier found by SVM is bounded by O

(
k ln m

m

)
with high probability. This gives an alternative method of analyzin SVM’s.

SVM with non-linear classifiers

If the data x1:m was not linearly separable, then no w ∈ R
n satisfying the constraints in (1)

would exist and the SVM algorithm would fail completely. To allow some noisy data, the
constraints are often relaxed by a small amount ξi, and the objective function penalized by
the net deviation

∑
i ξi from the constraints. This gives rise to the soft margins SVM:

min
1
2
‖w‖2 +

∑
i

ξi

s.t. ∀i : yi (w · xi) ≥ 1 − ξi

ξi ≥ 0

Soft margins SVMs are useful when the data are inherently linearly separable but the
labels are perturbed by some small amount of noise, a case often arising in practice. How-
ever, for some kinds of data (see figure 1) only higher dimensional surfaces can classify
accurately. The basic SVM theory can still be applied, but the data has to be mapped to
a higher dimensional space first. For example, we can take all possible monomial terms up
to a certain degree. To illustrate, a data point x = (x1, x2) ∈ R

2 can be mapped to R
6 as

follows
x = (x1, x2) 
→ ψ(x) = (1, x1, x2, x

2
1, x

2
2, x1x2).

A hyperplane in the new space assumes the form

a+ bx1 + cx2 + dx2
1 + ex2

2 + fx1x2 = 0

which is a degree 2 polynomial. This corresponds to a conic section (such as a circle,
parabola, etc.) in the original space, which can correctly classify the data in figure 1.
When considering all surfaces up to degree d, the dimension of a mapped example blows
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up as O(nd), where n was the original dimension. This might create severe computational
problems since naively storing and operating the projected examples will require huge space
and time complexity. Further, the high descriptive complexity of a linear classifier in the
expanded space might pose problems of overfitting.

SVM’s succesfully bypass both problems. The statistical problem is overcome by the fact
that the optimal classifier is still given by a few support vectors; or alternatively, that the
VC-dimension of a space of classifiers with large margin does not grow with the dimension
of the space. Computational complexity is kept low via what is known as the kernel trick,
which will be described after the spring break.
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