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Last lecture, we focused on bounding the generalization error of AdaBoost, providing
an upper bound in terms of the VC-dimension of the concept class of all linear threshold
functions that express the final hypothesis in terms of its weak hypotheses. Using this
bound, we saw that as the number of weak hypotheses grows large, our test error may
increase correspondingly, causing overfitting.

This analysis said nothing of our confidence in our final hypothesis, though. We had ex-
pected that as the number of weak hypotheses increases, confidence in our final hypothesis
would correspondingly increase, driving down the generalization error. Last time, to rigor-
ously verify this notion, we introduced the margin of a labeled example under a hypothesis
— intuitively, the weighted difference between the number of correctly labeled examples and
the incorrectly labeled examples. We left off here, only sketching a proof of the following
result — the focus of today’s lecture.

1 Bounding the Margin

Recall that for a finite weak hypothesis space H, we defined the convex hull of H to be

co(H) =

{
f : f(x) =

T∑
t=1

atht(x), T ≥ 1, at ≥ 0,
T∑

t=1

at = 1, h1, . . . , hT ∈ H

}
.

For the rest of this lecture, H will denote such a finite weak hypothesis space. Also, it is
important to note that the at define a distribution over h1, . . . , ht. Lastly, note that we will
never refer to the margin by name, but it will crop up frequently our discussion. Recall
that margin(x, y) = yf(x).

Theorem 1 Let m be the size of the training set. For all hypotheses f ∈ co(H) and for all
margin levels θ > 0,

PrD[ yf(x) ≤ 0 ] ≤ PrS [ yf(x) ≤ θ ] + O

(
1√
m

√
log m log |H|

θ2 + log 1/δ

)
(1)

with probability 1 − δ.

Here, PrD[ · ] denotes the probability of an event given some (x, y) drawn from the true
target distribution D, and PrS [ · ] denotes probability when (x, y) is chosen uniformly at
random from the sample S. We will use this notation consistently throughout this article.

Note that Theorem 1 says nothing specifically about AdaBoost. Hence, it generalizes
for any similar boosting algorithm, or any algorithm that combines hypotheses using a
weighted majority vote.

Let us now give a sketch of a proof of our main result. Let

CN =

f : f(x) =
1
N

N∑
j=1

hj(x), h1, . . . , hN ∈ H

 .



Clearly CN ⊂ co(H). We first claim that any f ∈ co(H) can be approximated by functions
in CN . We will use this simple fact to exploit Chernoff bounds, specifically Hoeffding’s
inequality, to bound the probabilities we face.

Fix f ∈ co(H). By definition, f(x) =
∑T

t=1 atht(x) for at ≥ 0 and
∑

at = 1. Now, for
an appropriate N to be chosen later, define

g(x) =
1
N

N∑
j=1

gj(x)

where gj = ht with probability at. That is, each gj is chosen independently at random to
be equal to one of the ht’s according to the distribution defined by the at’s. Fixing x, we
find that

Eg[ gj(x) ] =
t∑

t=1

Prg[ gj = ht ]ht(x) =
T∑

t=1

atht(x) = f(x).

where Eg and Prg refer to expectation and probability with respect to the random choice
of g, respectively.

Our proof now reduces to finding the precise relations between

PrD[ yf(x) ≤ 0 ] ≈ PrD[ yg(x) ≤ θ/2 ] ≈ PrS [ yg(x) ≤ θ/2 ] ≈ PrS [ yf(x) ≤ θ ].

Since f and g are approximately equal as already shown, we will use Chernoff bounds to
clarify the first and third approximates. The second follows from the union bound. Let us
now make this argument more formal with the use of some lemmas:

Lemma 1 Fix an example x from D. Then

Prg[ |f(x) − g(x)| > θ/2 ] ≤ 2e−Nθ2/8.

Proof. Define random variables Zj = gj(x) ∈ {−1, 1} so that Eg[ 1
N

∑
Zj ] = f(x) as

before. By Chernoff bounds,

Prg[ |f(x) − g(x)| > θ/2 ] = Prg

[ ∣∣∣∣Eg

[
1
N

∑
Zj

]
− 1

N

∑
Zj

∣∣∣∣ > θ/2
]

≤ 2e−2N(θ/4)2

= 2e−Nθ2/8.

Note that the Zj must be rescaled to {0, 1} to apply the Chernoff bounds as shown. For
convenience, we denote βθ := 2e−Nθ2/8.

Lemma 2 Say (x, y) ∼ P for some distribution P, where y ∈ {−1, 1}. Then,

PrP,g[ |yf(x) − yg(x)| > θ/2 ] ≤ βθ.

Proof. With some computation, we find

PrP,g[ |yf(x) − yg(x)| > θ/2 ] = PrP,g[ |f(x) − g(x)| > θ/2 ]
= EP [ Prg[ |f(x) − g(x)| > θ/2 ] ]
≤ EP [βθ ] = βθ

as was to be shown.
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Lemma 3 Fix some g ∈ CN and some θ > 0. Then,

PrS∼Dm [ PrD[ yg(x) ≤ θ/2 ] > PrS [ yg(x) ≤ θ/2 ] + ε ] ≤ e−2ε2m. (2)

Here, PrS∼Dm [ · ] denotes the probability of an event given a sample S of size m where each
element of S is drawn independently at random from the distribution D.

Proof. Define random variables

Zi =
{

1 if yig(xi) ≤ θ/2
0 otherwise

.

Hence, E[Zi ] = PrD[ yg(x) ≤ θ/2 ] and 1
m

∑
Zi = PrS [ yg(x) ≤ θ/2 ]. So, Equation 2

reduces to

PrS∼Dm

[
E[Zi] >

1
m

∑
Zi + ε

]
≤ e−2ε2m

by Hoeffding’s inequality.
Now we must show that the result in Lemma 3 holds for all g ∈ CN and for all θ > 0.

We will accomplish this by taking the union bound.

Lemma 4

PrS∼Dm [∀g ∈ Cn,∀θ > 0 : PrD[ yg(x) ≤ θ/2 ] ≤ PrS [ yg(x) ≤ θ/2 ] + ε ] ≥ 1 − δ (3)

if

ε =

√
log
((

N
2 + 1

)
|H|N/δ

)
2m

.

Proof. First, observe that for any y ∈ {−1, 1} and any g ∈ CN , where g(x) = 1
N

∑
gj(x),

yg(x) ≤ θ

2
⇐⇒ y

N

∑
gj(x) ≤ θ

2

⇐⇒ y
∑

gj(x) ≤ Nθ

2

⇐⇒ y
∑

gj(x) ≤
⌊

Nθ

2

⌋
⇐⇒ yg(x) ≤ θ̃

2

where θ̃ = 2bNθ/2c/N . Note that these steps hold because y
∑

gj(x) is always an integer.
Furthermore, notice that bNθ/2c takes values in {0, . . . , N/2}. Thus, when bounding the
probability in Equation 3, we only need consider (N/2 + 1) values of θ.

Therefore, by the union bound,

PrS∼Dm

[
∃g ∈ Cn,∃θ > 0 : PrD[ yg(x) ≤ θ/2 ] > PrS [ yg(x) ≤ θ/2 ] + ε

]
= PrS∼Dm

[
∃g ∈ Cn,∃θ > 0 : PrD[ yg(x) ≤ θ̃/2 ] > PrS [ yg(x) ≤ θ̃/2 ] + ε

]
≤ |CN |

(
N

2
+ 1
)

e−2ε2m

≤ |H|N
(

N

2
+ 1
)

e−2ε2m. (4)
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Note that the inequality follows from Lemma 3 and the fact that we only care about those
values of θ which affect θ̃. Setting Equation 4 above equal to δ and solving gives the result.

We are now in a position to tie our four lemmas together to complete the proof of our
main result.

Proof of Theorem 1. For all hypotheses f ∈ co(H) and for all margin levels θ > 0,
observe that

PrD[ yf(x) ≤ 0 ]
= PrD,g[ yf(x) ≤ 0 ∧ yg(x) ≤ θ/2 ] + PrD,g[ yf(x) ≤ 0 ∧ yg(x) > θ/2 ]
≤ PrD,g[ yg(x) ≤ θ/2 ] + PrD,g[ |yf(x) − yg(x)| > θ/2 ]
≤ Eg[ PrD[ yg(x) ≤ θ/2 | g ] ] + βθ

by Lemma 2. However, by Lemma 4, with probability greater than or equal to 1 − δ,

Eg[ PrD[ yg(x) ≤ θ/2 | g ] ] + βθ ≤ Eg[ PrS [ yg(x) ≤ θ/2 | g ] + ε ] + βθ.

Using Lemma 2 once more,

Eg[ PrS [ yg(x) ≤ θ/2 | g ] + ε ] + βθ

= PrS,g[ yg(x) ≤ θ/2 ] + ε + βθ

= PrS,g[ yg(x) ≤ θ/2 ∧ yf(x) ≤ θ ] + PrS,g[ yg(x) ≤ θ/2 ∧ yf(x) > θ ] + ε + βθ

≤ PrS,g[ yf(x) ≤ θ ] + PrS,g[ |yf(x) − yg(x)| > θ/2 ] + ε + βθ

≤ PrS [ yf(x) ≤ θ ] + βθ + ε + βθ.

To summarize, we have found that

PrD[ yf(x) ≤ 0 ] ≤ PrS [ yf(x) ≤ θ ] + 4e−Nθ2/8 +

√
log
((

N
2 + 1

)
|H|N/δ

)
2m

with probability greater than or equal to 1 − δ. Setting

N =
⌈

4
θ2 log

(
m

log |H|

)⌉
and slogging through the algebra gives the desired result.

Now that we have analyzed boosting in enough depth, let us set it aside for now. Boost-
ing, while very intuitively satisfying, was not explicitly designed to maximize margins. It is
time that we turn to a new way of calculating consistent hypotheses called support vector
machines.

2 Support Vector Machines

Given a collection of labeled examples (x1, y1), (x2, y2), . . . , (xm, ym) where xi ∈ Rn and
yi ∈ {−1, 1}, we wish to find a hypothesis consistent with all m examples. One could think
of the coordinates of xi as specific attributes, which, taken together, form a vector which
lies in Rn. Assuming for now that the data is linearly separable, we can take our hypotheses
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Figure 1: Labeled examples in the plane with a separating hyperplane (a line) passing
through the origin. We wish to maximize the distance δ between the line through the origin
and the other two parallel lines.

to be hyperplanes which separate positively labeled examples from negatively labeled ones.
See Figure 1.

We define our hyperplane by a perpendicular vector v ∈ Rn and always assume that it
passes through the origin. The quantity v · xi therefore represents how far xi is from the
separating hyperplane. Specifically,

v · xi =


> 0 if xi is above the hyperplane
= 0 if xi is on the hyperplane
< 0 if xi is below the hyperplane

Hence, we take our prediction rule to be sign(v · xi) and we similarly define the margin
as margin(xi, yi) = yi(v · xi). The points for which the margin is exactly δ are called
support vectors. Consequently, the best choice of v maximizes δ > 0 such that ‖v‖ = 1 and
yi(v · xi) ≥ δ for all i. This criterion will be the goal of our further study.
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