
COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #9
Scribe: Bryan Conroy March 3, 2008

1 Boosting

Under the PAC learning model that we have been discussing, learning algorithms are re-
quired to be capable of attaining arbitrarily small error probabilities. To review, a concept
class C is learnable (under the PAC model) if

∃ algorithm A

∀ c ∈ C

∀ D

∀ ε > 0
∀ δ > 0

A takes m = poly
(

1
ε
, 1

δ
, · · ·

)
examples and computes a hypothesis h such that

Pr [errD (h) ≤ ε] ≥ 1 − δ

However, suppose a learning algorithm cannot attain error rates less than some fixed
amount, say 40%. Is it possible, despite this limitation, to still drive the error rate ar-
bitrarily close to zero? This question motivates the weak learning model, which will be
described below. This model will consider circumstances in which the learning algorithms
can only do slightly better than random guessing, that is, error probability less than 50%.

A concept class C is weakly learnable if
∃ γ > 0
∃ algorithm A

∀ c ∈ C

∀ D

∀ δ > 0
A takes m = poly

(
1
δ
, · · ·

)
examples to compute a hypothesis h such that

Pr

[
errD (h) ≤

1

2
− γ

]
≥ 1 − δ

In other words, the algorithm A can, with high probability, do slightly better than random
guessing.

One question we can ask is: given a fixed distribution D, is it the case that weak
learning equals strong learning? The answer is no for general D, and this can be illustrated
through the following example.

Example: Let X = {0, 1}n ∪ {Z}, C = { all functions on X}, and D be such that it
puts probability 1

4 on the point Z, and is uniform everywhere else. Given a set of examples,
the algorithm will quickly learn c (Z), since it is very likely that Z will appear amongst the
examples. However, since it only sees a polynomial (in n) number of examples from the
space of size 2n length n binary strings, the algorithm is not expected to do much better



Figure 1: Generic boosting algorithm

than random guessing on this set. Assuming the algorithm learns c (Z) correctly, the
expected error rate of any learning algorithm is then

error ≈
1

4
(0) +

3

4

(
1

2

)

=
3

8
.

In this case, given only a polynomial size example set, there is no way to drive the error
much lower than 3

8 .
However, in the distribution free setting (PAC model), we want to prove the following

theorem:
Theorem: Weak learning = strong learning under the PAC model
The proof is not immediate, but will instead follow from the construction of a boost-

ing method, which is capable of developing strong learning algorithms from weak learning
algorithms.

1.1 Boosting Algorithm

Here, the details of the boosting method are outlined.
Given:

1. m examples from some fixed, but unknown, distribution D.

Assume S = 〈(x1, y1) , · · · , (xm, ym)〉, with yi ∈ {−1,+1} ∀i ∈ {1, ...,m}.

(The switch to {−1,+1} for the label set makes the math more convenient).

2. Access to a weak learning algorithm A, producing hypotheses h ∈ H.

2



Goal: Produce a new hypothesis H with error ≤ ε, for any fixed ε > 0. Here, the
output hypothesis H does not necessarily come from the same hypothesis space H.

Intuitively, since we only have access to the weak learning algorithm, we might run A

a number of times to produce a sequence of weak hypotheses. However, it is not sufficient
to simply run A numerous times without modifying its input. For example, if A is deter-
ministic, then running A multiple times on the same example set S will produce the same
hypothesis over and over again. Instead, the input to A must give new and informative
information on each round. Boosting accomplishes this by producing a new distribution
from the original D for each round. A graphical representation of the boosting algorithm
is shown in Figure 1.

Outline of a generic boosting algorithm:

for t = 1, · · · , T (T = # rounds)

construct Dt, where Dt is a distribution over the indices {1, · · · ,m}

run A on Dt, producing ht : X → {−1,+1}

εt = errDt
(ht) = 1

2 − γt, where γt ≥ γ ∀t by the weak learning assumption

end

output H (a combination of the weak hypotheses h1, · · · , hT )

Although the algorithm is outlined above, there are still two questions that need to
be addressed. First, how do we design the distributions D1,D2, · · · ,DT from the true
distribution D such that A is forced to provide new and useful information on each round?
Also, once the rounds have completed, how do we combine the sequence of weak hypotheses
into the strong hypothesis H? To answer these questions, we will look at a popular boosting
algorithm called AdaBoost.

1.2 AdaBoost

AdaBoost uses a recurrent construction for the distributions Dt. The idea is to increase the
weights on “hard” examples (examples which have been previously misclassified on earlier
rounds), while at the same time decreasing the weights on “easy” examples (examples which
have been classified correctly).

D1 (i) =
1

m

Dt+1 (i) =
Dt (i)

Zt
×

{
e−αt if yi = ht (xi)
eαt if yi 6= ht (xi)

=
Dt (i)

Zt
exp (−yiαtht (xi))

where αt > 0 and Zt is a normalizing weight to ensure that Dt+1 is a probability distribution.
Also, note that Dt is a probability distribution over the indices {1, · · · ,m} so that Dt (i)
represents the probability of the pair (xi, yi). For the time being, αt is any fixed positive
constant. Later, an optimal value for αt will be chosen to minimize a bound on the training
error êrr (H).

3



The output hypothesis H is constructed from the weak hypotheses by:

H (x) = sign

(
T∑

t=1

αtht (x)

)

which is a weighted voting rule.
One of the reasons AdaBoost has become so popular is that it is more practical for

applications because it does not depend on the weak learning parameter γ. In this sense,
the algorithm can adapt to the weak learning algorithm (hence, the name AdaBoost).
Additionally, as the next theorem will show, the training error of a hypothesis H generated
by AdaBoost decays exponentially fast in the number of rounds T .

Theorem: Let H be the output hypothesis of AdaBoost. Then:

êrr (H) ≤
T∏

t=1

(
2
√

εt (1 − εt)

)

=
T∏

t=1

√
1 − 4γ2

t

≤ exp

(
−2

T∑

t=1

γ2
t

)

where the last line is obtained from the inequality 1 + x ≤ ex. Thus, if γt ≥ γ ∀t by the
weak learning assumption, then

êrr (H) ≤ exp
(
−2γ2T

)

so that the error dies exponentially fast in T .
Proof: The proof follows in three steps:

1. First, obtain the following expression for DT+1 (i):

DT+1 (i) =
exp (−yif (xi))

m
∏T

t=1 Zt

where f (x) =
∑T

t=1 αtht (x).

Proof: Since Dt+1 (i) is given by:

Dt+1 (i) =
Dt (i)

Zt

exp (−yiαtht (xi))

we can unravel the recurrence to obtain:

DT+1 (i) =
1

m
×

e−yiα1h1(xi)

Z1
× · · · ×

e−yiαT hT (xi)

ZT

=
1

m

T∏

t=1

e−yiαtht(xi)

Zt

=
exp

(
−yi

∑T
t=1 αtht (xi)

)

m
∏T

t=1 Zt

=
exp (−yif (xi))

m
∏T

t=1 Zt

4



2. Second, we bound the training error of H by the product of the normalizing weights
Zt:

êrr (H) ≤
T∏

t=1

Zt.

Proof:

êrr (H) =
1

m

m∑

i=1

1 (yi 6= H (xi))

=
1

m

m∑

i=1

1 (yif (xi) ≤ 0)

≤
1

m

m∑

i=1

e−yif(xi)

=
1

m

m∑

i=1

m

(
T∏

t=1

Zt

)
DT+1 (i)

=

(
T∏

t=1

Zt

)
m∑

i=1

DT+1 (i)

=
T∏

t=1

Zt

where 1 (·) is the indicator function. The third line comes from the observation
that when 1 (yif (xi) ≤ 0) = 1, then yif (xi) ≤ 0 and so exp (−yif (xi)) ≥ 1 =
1 (yif (xi) ≤ 0). (Also, when 1 (yif (xi) ≤ 0) = 0, then exp (−yif (xi)) ≥ 0 triv-
ially). The fourth line follows from step 1. The last line is obtained from the fact
that DT+1 is a probability distribution over the examples.

3. Now that the training error has been bounded in step 2 by the product of the nor-
malizing weights Zt, the last step is to express Zt in terms of εt:

Zt = 2
√

εt (1 − εt).

Proof:

Zt =
m∑

i=1

Dt (i) exp (−yiαtht (xi))

=
∑

i:yi=ht(xi)

Dt (i) e−αt

∑

i:yi 6=ht(xi)

Dt (i) eαt

= (1 − εt) e−αt + εte
αt

where the last step comes from the fact that

∑

i:yi 6=ht(xi)

Dt (i) = εt

since the sum is taken over examples misclassified, which gives the error for the tth

round.

5



Since the expression above for Zt is valid for all αt, minimizing Zt with respect to αt

for each t will produce the minimum training error êrr (H). Taking the derivative of
Zt with respect to αt and setting equal to zero, we obtain:

0 = − (1 − εt) e−αt + εte
αt

Solving, we find:

αt =
1

2
ln

(
(1 − εt)

εt

)
.

Using this value of αt in the expression for Zt, and then plugging that into the bound
on the training error for H, we end up with

êrr (H) ≤
T∏

t=1

(
2
√

εt (1 − εt)

)

which proves the theorem.

6


