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1 Outline

In the previous lecture, we saw that PAC learning is not enough to model real learning prob-
lems. We may not desire or even may not be able to find a hypothesis that is consistent with
the training data. So we introduced a more general model in which the data is generated as
a pair (x, y) from an unknown distribution D. And we defined the generalization error to
be errD(h) = Pr(x,y)∼D[h(x) 6= y] and also the empirical error of the training set x1, ..., xm

to be the fraction of mistakes on the training set . ˆerr(h) = 1
m |{i : h(xi) 6= yi|. We also

showed that in order to get an appropriate bound for the generalization error, it is enough
to show that |err(h) − ˆerr(h)| ≤ ε. And today, we will introduce some powerful tools to
find the desired bounds.

2 Relative Entropy and Chernoff Bounds

In order to find bounds for the error in this new model, first, we prove a set of more general
bounds called Chernoff Bounds:

Suppose X1, ...,Xm are m i.i.d random variables such that ∀i : Xi ∈ [0, 1]. Let p be the
common1 expected value of Xi. Also define a new variable p̂ to be the average of the value
of these random variables:

p̂ =
1

m

m
∑

i=1

Xi· (1)

p̂ is called the empirical average of the random variables X1, ...,Xm. In our learning model
p will be the generalization error and p̂ the training error.

So, Chernoff bounds are general bounds on how fast p̂ approaches to p. One example
of Chernoff bounds is Hoeffding’s inequality that we saw in the last lecture. Today, we are
going to prove some much stronger results. However, before that, we are going to define
one important way to measure the distance between two probability distributions called
Relative Entropy.

2.1 Relative Entropy

Entropy is one of the most fundamental concepts in Information Theory. Suppose Alice
wants to send a letter of the alphabet to Bob over the internet, so she has to encode the
letter in bits. One obvious way to do this is to encode each letter of the alphabet with 5
bits, and since the number of letters of the alphabet is 26, 5 bits is enough. But this method
is wasteful. In English the letter e is more frequnent than the letter q. So one smarter way
she can use, is for example to encode the letter e with two bits, and the letter q with 7 bits.
Then on average, she uses less bits to send a message to Bob.

1Since these random variables are i.i.d they have the same excpected value.



So by using less bits for more common letters and more bits for less common letters, the
expected number of bits to send decreases. Now suppose the probability of sending each
message x is P (x). In information theory, it can be proved that the optimal way of coding
a message with probability P (x) is to use lg 1

P (x) code length for x.
So the expected code length will be:

E[codelength] =
∑

x

P (x) lg
1

P (X)
. (2)

This quantity is called entropy. It is obvious that the entropy is always non-negative, and
also since entropy is the optimal way of sending a message, it cannot exceed lg(#messages)
(which is the naive way of sending messages). Entropy is a way to measure how spread out
our distribution is. The larger the entropy, the closer the distribution to a uniform random
distribution.

Now, suppose Alice and Bob think that their letter is from the French alphabet. So
they think the message x has some probability Q(x). But in fact, the message is from the
English alphabet and hence, it has distribution P(x). Alice thinks the distribution is Q(x),
so she uses lg 1

Q(x) bits to send each message. Hence the expected codelength will be :

E[codelength] =
∑

x

P (x) lg
1

Q(x)
. (3)

So Alice is using a sub-optimal way to sending messages.
The Relative Entropy of two probability distributions P and Q, also called Kullback-

Libler divergence, which has the notations RE(P‖Q), D(P‖Q), and KL(P‖Q) is a way
to measure the distance between the two probability distributions P , Q. It says that on
average how much worse is the code length if we use the distribution Q, than the optimal
code length:

RE(P‖Q) =
∑

x

P (x) lg
1

Q(x)
−
∑

x

P (x) lg
1

P (x)
=
∑

x

P (x) lg
P (x)

Q(x)
. (4)

And since we cannot do better than the optimal case always

RE(P‖Q) ≥ 0. (5)

Also, in order to have a well defined definition, we define 0 lg 0 = 0 and 0 lg 0
0 = 0.

However, there are two draw-backs with the relative entropy. Realtive entropy is not
symmetric, RE(P‖Q) 6= RE(Q‖P ). So relative entropy is not a metric, it is just a way to
measure the distance between two probability distributions. Also, relative entropy can be
unbounded, for example, if there exists one x such that P (x) > 0 and Q(x) = 0. Also since
lg and ln are equal up to a constant we will use ln instead of lg to simplify our calculations.

Moreover, to keep the notation nicer, we can write the entropy of two Bernoulli distri-
bution (p, 1− p) and (q, 1− q) as follows:

RE(p‖q) = RE((p, 1 − p)‖(q, 1 − q)) = p ln
p

q
+ (1− p) ln

1− p

1− q
. (6)
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2.2 Chernoff Bounds

The most general form of Chernoff bounds is:

Theorem 1. (Chernoff Bounds) Assume random variables X1, ...,Xm are i.i.d, and
∀i : Xi ∈ [0, 1]. Let p = E[Xi] and p̂ = 1

m

∑

i Xi, then ∀ε > 0 :

Pr[p̂ ≥ p + ε] ≤ e−RE(p+ε‖p)m. (7)

Pr[p̂ ≤ p− ε] ≤ e−RE(p−ε‖p)m. (8)

Before proving the strong Chernoff Bounds, we are going to prove a weak result called
Markov’s inequality.

Theorem 2. (Markov’s inequality) Suppose X ≥ 0 is a random variable and t > 0 is a
real number, then

Pr[X ≥ t] ≤
E[X]

t
. (9)

Proof:

E[x] = Pr[X ≥ t] ·E[X|X ≥ t] + Pr[X < t] ·E[X|X < t]

≥ t · Pr[X ≥ t] + 0

which immediately implies the inequality. However this inequality is very weak. If we try
to find a bound for Pr[p̂ ≥ p + ε] we get:

Pr[p̂ ≥ p + ε] ≤
E[p̂]

p + ε
=

P

i
E[Xi]
m

p + ε
=

p

p + ε
. (10)

This bound is near one, and also independent of m, so this bound is absolutely useless.
A great observation makes it possible for us to use the Markov’s inequality. The function
f(x) = eax is one-to-one and strictly increasing. So for any a > 0, eax ≥ eay iff x ≥ y.
Let q = p + ε and λ > 0 then p̂ ≥ q iff eλmp̂ ≥ eλmq. We have:

Pr[p̂ ≥ q] = Pr[eλmp̂ ≥ eλmq]. (11)

By Markov’s inequality

Pr[eλmp̂ ≥ eλmq] ≤ e−λmqE[eλmp̂]

= e−λmqE[eλ
P

Xi ]

= e−λmqE
[

ΠeλXi

]

.

However the Xis are independent, so:

e−λmqE
[

∏

eλXi

]

= e−λmq
∏

E[eλXi ]. (12)
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Now since Xi ∈ [0, 1] always, eλx ≤ 1− x + xeλ and so:

e−λmq
∏

E[eλXi ] ≤ e−λmq
∏

E[1−Xi + Xie
λ]

= e−λqm(1 + p + peλ)m

= eφ(λ)m

where we define φ(λ) = ln[e−λq(1− p + peλ)].
So we should find a λ to minimize φ(λ). By solving dφ

dλ = 0 we get that φ(λ) minimizes

when λmin = ln
(

q(1−p)
(1−q)p

)

and by pluging in λmin to φ() we get φ(λmin) = −RE(q‖p) and
so:

Pr[p̂ ≥ p + ε] ≤ e−RE(p+ε‖p)m. (13)

This completes the proof of the theorem.
By proving this upper bound, we can simply prove the corresponding lower bound. Let

Xi ← 1−Xi so that p← 1− p and p̂← 1− p̂. Then:

Pr[p̂ ≤ p− ε] = Pr[1− p̂ ≥ 1− p + ε] ≤ e−RE(1−p+ε‖1−p)m = e−RE(p−ε‖p)m. (14)

Other bounds come from bounding the relative entropy. For example Hoeffding’s inequality
comes directly from the fact that RE(p + ε‖p) ≥ 2ε2 . Or we can obtain the following
multiplicative inequalites:

∀γ ∈ [0, 1] : Pr[p̂ ≥ p + γp] ≤ e−mpγ2/3 (15)

∀γ ∈ [0, 1] : Pr[p̂ ≤ p− γp] ≤ e−mpγ2/2 (16)

2.3 McDiarmid’s inequality

Finally, we are going to state McDiarmid’s inequality, which is a generalization of Hoeffding’s
inequality.

Theorem 3. Given a function f for which

∀x1, ..., xm, x′
i : |f(x1, ..., xi, ..., xm)− f(x1, ..., x

′
i, ..., xm)| ≤ ci (17)

and given X1, ...,Xm independent but not necessarily identically distributed random variable.
Then:

Pr[f(x1, ..., xm) ≥ E[f(x1, ..., xn)] + ε] ≤ exp

(

−2ε2

∑

ci
2

)

. (18)

To show that Hoeffding’s inequality is a special case of this inequality, let f(x1, ..., xm) =
1
m

∑

xi = p̂ and E[f(x1, ..., xm)] = p. Then clearly

∀x1, ...xm, x′
i : |f(x1, ...xi, ...xm)− f(x1, ..., x

′
i, ..., xm)| ≤

1

m
|xi − x′

i|

≤
1

m

so ci = 1
m for all i. Applying McDiarmid’s inequality we get:

Pr[p̂ ≥ p + ε] ≤ exp

(

−2ε2

∑

i
1

m2

)

= exp
(

−2ε2m
)

. (19)
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3 Bounding the generalization error

Now we are going to use Hoeffding’s inequality to find a bound for the generalization error
of the hypothesis. All of the results that we will find can be generalized to infinite H, by
replacing ln |H| with the VC-dimention of H, but to make it simpler, we are not going to
deal with that.

Theorem 4. Given examples x1, ..., xm, with probability at least 1−δ if m = O
(

ln |H|+ln 1

δ

ε2

)

then:
∀h ∈ H : |err(h)− ˆerr(h)| ≤ ε. (20)

Proof: First we fix h, and define the following indicator variables: Xi to be 1 if h(xi) 6=
yi and 0, otherwise. It is obvious that err(h) = E[Xi] and ˆerr(h) = 1

m

∑

Xi. Then by
applying Hoeffding’s inequality we get:

Pr[|err(h)− ˆerr(h)| > ε] ≤ 2e−2ε2m (21)

and so by the union bounds (as ∃ is a big or)

Pr[∃h ∈ H : |err(h)− ˆerr(h)| > ε] ≤ 2|H|e−2ε2m. (22)

We want this bound to be less than δ so:

2|H|e−2ε2m ≤ δ (23)

which hold if

m ≥
ln(2|H|) + ln(1

δ )

2ε2
. (24)

So given some number of examples, the error we expect is, with probability at least
1− δ,

err(h) ≤ ˆerr(h) +

√

ln(2|H|) + ln(1
δ )

2m
. (25)

This means:

err(h) ≤ ˆerr(h) + O





√

ln(2|H|) + ln(1
δ )

m



 . (26)

This formula, explains the essence of the three conditions for learning:

• Large amount of training data: by increasing m, the second term becomes smaller
and hence the total error decreases.

• Low training error: This is the first term of the summation. By decreasing the training
error, the generalization error also decreases.

• Simple hypothesis space. The measure for simplicity is the size of the hypothesis, as
measured by ln(|H|) . If we make this smaller, the generalization error decreases.

Finally, there are two comments on the formula that we obtained for the generalization
error:

First, we saw that in the PAC model, sample size m depends on ε but here the sample
size depends on ε2, and in practice we see that when we cannot find a consistent hypothesis,
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Figure 1: empirical error vs. generalization error

we need more data to obtain a hypothesis with less generalization error, and the fact that
sample size depends on ε2 is something real.

Second, as we can see, there exists a trade-off between decreasing the traing error and
keeping the hypothesis simple. As the complexity of the hypotheses increases, the proba-
bility of finding a consistent hypothesis increases and so ˆerr(h) approaches 0. However, at
some point, the O term begins to dominate and err(h) reaches a minimum after which it
begins to rise again. This is called overfitting.

Overfitting is one of the hardest and most important issues in practical machine learning
to deal with. The major difficulty with overfitting is because in many cases only the training
error ˆerr(h) can be observed directly. There are at least three main approaches to solving
this problem that are common in machine learning:

• Structural Risk Minimization: The main idea in this approach is to try to find the
exact value of the theoretical bounds to minimize the bound directly.

• Cross-Validation: This approach separates the training data to two segmants, one
for training the hypothesis, and the other for testing the obtained hypothesis. As a
result, we can estimate the generalization error, and have an idea on when to stop the
algorithm.

• New Algorithms: This approach tries to find a hypothesis, that resists overfitting. It
is not clear whether such an algorithm can exist at all! However, we will next study
two practical algorithms that seem to have this property.
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