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1 First thought

We have ΠH(S) = {〈h(X1), h(X2), · · · , h(Xm)〉 : h ∈ H}, where S = 〈X1, · · · ,Xm〉. And
ΠH(m) = max

S:|S|=m

|ΠH(S)|.

We say that H shatters S if |ΠH(S)| = 2m(m = |S|). VC-dim(H) = max{|S| : H shatters S}.
If |H| < ∞, then d = VC-dim(H) ≤ lg |H|. In fact, there are only two cases:

• VC-dim = ∞ ⇒ ΠH(m) = 2m,∀m

• VC-dim = d < ∞ ⇒ ΠH(m) = O(md)

This follows from Sauer’s Lemma, which we now state and prove.

2 Sauer’s Lemma

Lemma: ∀H with d = VC-dim(H),

ΠH(m) ≤

d
∑

i=0

(

m

i

)

= Φd(m) = O(md).

In other words, the sum of the binomial is just the number of different ways of choosing at
most d items from a set of size m.

2.1 The Interval Example

In our examination of intervals, we found that the equation for the number of dichotomies
possible was of the form:

ΠH(m) =

(

m

2

)

+

(

m

1

)

+

(

m

0

)

= Φ2(m).

So Sauer’s Lemma is tight in this example.

2.2 Proof of Sauer’s Lemma

First, a few facts and conventions will be used in the proof:

•
(

m

k

)

=
(

m−1

k

)

+
(

m−1

k−1

)

•
(

m

k

)

= 0, if k < 0 or k > m

We will prove Sauer’s Lemma by induction on m + d.
Base cases:

Our 2 base cases (for our 2 variables) are:



H H1 H2

x1 x2 x3 x4 x5 x1 x2 x3 x4 x1 x2 x3 x4

h1 0 1 1 0 0 → 0 1 1 0
h2 0 1 1 0 1 → 0 1 1 0
h3 0 1 1 1 0 → 0 1 1 1
h4 1 0 0 1 0 → 1 0 0 1
h5 1 0 0 1 1 → 1 0 0 1
h6 1 1 0 0 1 → 1 1 0 0

Table 1: Example Datasets for Proof of Sauers Lemma

• m = 0: ΠH(m) = 1 =
d
∑

i=0

(

0

i

)

. It is the degenerate labeling of the empty set.

• d = 0: ΠH(m) = 1 =
(

m

0

)

. You can not even shatter one point, so only one behavior
possible.

Inductive Step:

Assuming lemma holds for any m′ + d′ < m + d. Given S = 〈x1, x2, · · · , xm〉, we want to
show |ΠH(S)| ≤ Φd(m).

The main step of the proof is the construction of two new hypothesis spaces: H1 and
H2 to which we can apply our induction hypothesis. Here, we have H1 and H2 defined
on S′ = X ′ = {x1, x2, · · · , xm−1}, that is, on all the points except xm. H1 is constructed
by just ignoring behavior on xm. H2 is constructed by including only dichotomies that
”collapsed” in H1.

As shown in the example in Table 1, h1 and h2, h4 and h5 are the same if we ignore x5,
so in each of these pairs, only one of goes to H1, and the other one goes to H2.

Notice that if a set is shattered by H1, then it is also shattered by H. The reason is
that we can generate H by using the same xis when we generate H1. Thus we have

VC-dim(H1) ≤ VC-dim(H) = d

If a set T is shattered by H2, then T ∪ {xm} is shattered by H since there will be two
corresponding hypotheses in H with each element of H2 by adding xm = 1 and xm = 0.
Thus, VC-dim(H) ≥ VC-dim(H2) + 1, which implies

VC-dim(H2) ≤ d − 1.

Now, by induction, we have:

|H1| = |ΠH1
(S′)| ≤ Φd(m − 1).

|H2| = |ΠH2
(S′)| ≤ Φd−1(m − 1).

2



Then, we have

|ΠH(S)| = |H1| + |H2|

≤

d
∑

i=0

(

m − 1

i

)

+

d−1
∑

i=0

(

m − 1

i

)

=

d
∑

i=0

(

m − 1

i

)

+

d
∑

i=0

(

m − 1

i − 1

)

=

d
∑

i=0

(

m

i

)

= Φd(m).

2.3 Upperbound on Φd(m)

Claim: Φd(m) ≤ (em

d
)d for m ≥ d ≥ 1.

Proof:

(

d

m

)d d
∑

i=0

(

m

i

)

≤
d

∑

i=0

(

d

m

)i (m

i

)

− − − − − − − − − −Since

(

d

m

)

≤ 1.

≤

m
∑

i=0

(

m

i

)(

d

m

)i

1m−i − − − − − − − −We are now adding nonnegative terms.

=

(

1 +
d

m

)m

− − − − − − − − − − − −By the binomial formula.

≤ ed.

Then we have Φd(m) ≤ (em

d
)d.

Using this bound, we will have the following results:
With probability of at least 1 − δ, ∀h ∈ H, if h is consistent with m examples, then

err(h) ≤
2

m

[

d lg
(em

d

)

+ lg

(

1

δ

)

+ 1

]

.

If m = O(1

ε
[ln(1

δ
) + d ln(1

ε
)]), we have err(h) ≤ ε.

3 About the Lower Bound

Now, let’s try to give a lower bound.

3.1 (Bogus) Argument on Lower Bound

Let D be uniform on z1, z2, · · · , zd. We run A with m = d/2 examples labeled arbitrarily,
say A outputs hA. Now let c ∈ C be any concept that is consistent with labels in S such
that c(x) 6= hA(x) for x 6∈ S. Then we have err(hA) ≥ 1/2.

But, this is not a valid argument because we cannot choose target concept c after we
choose hA. The PAC model requires that we choose c before we choose S. So, in this
argument, we are making c a function of hA, which is in turn a function of S, which is
obviously wrong.
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3.2 A Theorem on the Lower Bound

We will instead prove the following:
Theorem: ∀A, ∃c ∈ C,∃D, such that if A gets m = d/2 examples, where d = VC-dim(C),
then

Pr

[

err(hA) >
1

8

]

≥
1

8

This means that if given only d/2 examples, then PAC learning is impossible for ε ≤ 1/8
and δ ≤ 1/8.
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