COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire
Lecture \#6
Scribe: Yang Feng
February 20, 2008

1 First thought

We have $\Pi_{\mathcal{H}}(S)=\left\{\left\langle h\left(X_{1}\right), h\left(X_{2}\right), \cdots, h\left(X_{m}\right)\right\rangle: h \in \mathcal{H}\right\}$, where $S=\left\langle X_{1}, \cdots, X_{m}\right\rangle$. And $\Pi_{\mathcal{H}}(m)=\max _{S:|S|=m}\left|\Pi_{\mathcal{H}}(S)\right|$.
We say that \mathcal{H} shatters S if $\left|\Pi_{\mathcal{H}}(S)\right|=2^{m}(m=|S|)$. VC- $\operatorname{dim}(\mathcal{H})=\max \{|S|: \mathcal{H}$ shatters $S\}$. If $|\mathcal{H}|<\infty$, then $d=\operatorname{VC}-\operatorname{dim}(\mathcal{H}) \leq \lg |\mathcal{H}|$. In fact, there are only two cases:

- VC-dim $=\infty \Rightarrow \Pi_{\mathcal{H}}(m)=2^{m}, \forall m$
- $\operatorname{VC-dim}=d<\infty \Rightarrow \Pi_{\mathcal{H}}(m)=O\left(m^{d}\right)$

This follows from Sauer's Lemma, which we now state and prove.

2 Sauer's Lemma

Lemma: $\forall \mathcal{H}$ with $d=\operatorname{VC}-\operatorname{dim}(\mathcal{H})$,

$$
\Pi_{\mathcal{H}}(m) \leq \sum_{i=0}^{d}\binom{m}{i}=\Phi_{d}(m)=O\left(m^{d}\right) .
$$

In other words, the sum of the binomial is just the number of different ways of choosing at most d items from a set of size m.

2.1 The Interval Example

In our examination of intervals, we found that the equation for the number of dichotomies possible was of the form:

$$
\Pi_{\mathcal{H}}(m)=\binom{m}{2}+\binom{m}{1}+\binom{m}{0}=\Phi_{2}(m) .
$$

So Sauer's Lemma is tight in this example.

2.2 Proof of Sauer's Lemma

First, a few facts and conventions will be used in the proof:

- $\binom{m}{k}=\binom{m-1}{k}+\binom{m-1}{k-1}$
- $\binom{m}{k}=0$, if $k<0$ or $k>m$

We will prove Sauer's Lemma by induction on $m+d$.

Base cases:

Our 2 base cases (for our 2 variables) are:

	\mathcal{H}					\mathcal{H}_{1}						\mathcal{H}_{2}			
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		x_{1}	x_{2}	x_{3}	x_{4}		x_{1}	x_{2}	x_{3}	x_{4}
h_{1}	0	1	1	0	0	\rightarrow	0	1	1	0					
h_{2}	0	1	1	0	1						\rightarrow	0	1	1	0
h_{3}	0	1	1	1	0	\rightarrow	0	1		1					
h_{4}	1	0	0	,	0	\rightarrow	1	0	0	1					
h_{5}	1	0	0	1	1						\rightarrow	1	0	0	1
h_{6}	1	1	0	0	1	\rightarrow	1	1	0	0					

Table 1: Example Datasets for Proof of Sauers Lemma

- $m=0: \Pi_{\mathcal{H}}(m)=1=\sum_{i=0}^{d}\binom{0}{i}$. It is the degenerate labeling of the empty set.
- $d=0: \Pi_{\mathcal{H}}(m)=1=\binom{m}{0}$. You can not even shatter one point, so only one behavior possible.

Inductive Step:

Assuming lemma holds for any $m^{\prime}+d^{\prime}<m+d$. Given $S=\left\langle x_{1}, x_{2}, \cdots, x_{m}\right\rangle$, we want to show $\left|\Pi_{\mathcal{H}}(S)\right| \leq \Phi_{d}(m)$.

The main step of the proof is the construction of two new hypothesis spaces: \mathcal{H}_{1} and \mathcal{H}_{2} to which we can apply our induction hypothesis. Here, we have \mathcal{H}_{1} and \mathcal{H}_{2} defined on $S^{\prime}=X^{\prime}=\left\{x_{1}, x_{2}, \cdots, x_{m-1}\right\}$, that is, on all the points except x_{m}. \mathcal{H}_{1} is constructed by just ignoring behavior on $x_{m} . \mathcal{H}_{2}$ is constructed by including only dichotomies that "collapsed" in \mathcal{H}_{1}.

As shown in the example in Table 1, h_{1} and h_{2}, h_{4} and h_{5} are the same if we ignore x_{5}, so in each of these pairs, only one of goes to \mathcal{H}_{1}, and the other one goes to \mathcal{H}_{2}.

Notice that if a set is shattered by \mathcal{H}_{1}, then it is also shattered by \mathcal{H}. The reason is that we can generate \mathcal{H} by using the same $x_{i} \mathrm{~s}$ when we generate \mathcal{H}_{1}. Thus we have

$$
\text { VC-dim }\left(\mathcal{H}_{1}\right) \leq \text { VC-dim }(\mathcal{H})=d
$$

If a set T is shattered by \mathcal{H}_{2}, then $T \cup\left\{x_{m}\right\}$ is shattered by \mathcal{H} since there will be two corresponding hypotheses in \mathcal{H} with each element of \mathcal{H}_{2} by adding $x_{m}=1$ and $x_{m}=0$. Thus, VC-dim $(\mathcal{H}) \geq \operatorname{VC}-\operatorname{dim}\left(\mathcal{H}_{2}\right)+1$, which implies

$$
\text { VC- }-\operatorname{dim}\left(\mathcal{H}_{2}\right) \leq d-1
$$

Now, by induction, we have:

$$
\begin{gathered}
\left|\mathcal{H}_{1}\right|=\left|\Pi_{\mathcal{H}_{1}}\left(S^{\prime}\right)\right| \leq \Phi_{d}(m-1) \\
\left|\mathcal{H}_{2}\right|=\left|\Pi_{\mathcal{H}_{2}}\left(S^{\prime}\right)\right| \leq \Phi_{d-1}(m-1) .
\end{gathered}
$$

Then, we have

$$
\begin{aligned}
\left|\Pi_{\mathcal{H}}(S)\right| & =\left|\mathcal{H}_{1}\right|+\left|\mathcal{H}_{2}\right| \\
& \leq \sum_{i=0}^{d}\binom{m-1}{i}+\sum_{i=0}^{d-1}\binom{m-1}{i} \\
& =\sum_{i=0}^{d}\binom{m-1}{i}+\sum_{i=0}^{d}\binom{m-1}{i-1} \\
& =\sum_{i=0}^{d}\binom{m}{i} \\
& =\Phi_{d}(m) .
\end{aligned}
$$

2.3 Upperbound on $\Phi_{d}(m)$

Claim: $\Phi_{d}(m) \leq\left(\frac{e m}{d}\right)^{d}$ for $m \geq d \geq 1$.
Proof:

$$
\begin{aligned}
& \left(\frac{d}{m}\right)^{d} \sum_{i=0}^{d}\binom{m}{i} \leq \sum_{i=0}^{d}\left(\frac{d}{m}\right)^{i}\binom{m}{i} \quad--------- \text { Since }\left(\frac{d}{m}\right) \leq 1 . \\
& \leq \sum_{i=0}^{m}\binom{m}{i}\left(\frac{d}{m}\right)^{i} 1^{m-i} \quad------- \text { We are now adding nonnegative terms. } \\
& =\left(1+\frac{d}{m}\right)^{m} \quad----------- \text { By the binomial formula. } \\
& \leq e^{d} \text {. }
\end{aligned}
$$

Then we have $\Phi_{d}(m) \leq\left(\frac{e m}{d}\right)^{d}$.
Using this bound, we will have the following results:
With probability of at least $1-\delta, \forall h \in \mathcal{H}$, if h is consistent with m examples, then

$$
\operatorname{err}(h) \leq \frac{2}{m}\left[d \lg \left(\frac{e m}{d}\right)+\lg \left(\frac{1}{\delta}\right)+1\right] .
$$

If $m=O\left(\frac{1}{\epsilon}\left[\ln \left(\frac{1}{\delta}\right)+d \ln \left(\frac{1}{\epsilon}\right)\right]\right)$, we have $\operatorname{err}(h) \leq \epsilon$.

3 About the Lower Bound

Now, let's try to give a lower bound.

3.1 (Bogus) Argument on Lower Bound

Let D be uniform on $z_{1}, z_{2}, \cdots, z_{d}$. We run A with $m=d / 2$ examples labeled arbitrarily, say A outputs h_{A}. Now let $c \in \mathcal{C}$ be any concept that is consistent with labels in S such that $c(x) \neq h_{A}(x)$ for $x \notin S$. Then we have $\operatorname{err}\left(h_{A}\right) \geq 1 / 2$.

But, this is not a valid argument because we cannot choose target concept c after we choose h_{A}. The PAC model requires that we choose c before we choose S. So, in this argument, we are making c a function of h_{A}, which is in turn a function of S, which is obviously wrong.

3.2 A Theorem on the Lower Bound

We will instead prove the following:
Theorem: $\forall A, \exists c \in C, \exists D$, such that if A gets $m=d / 2$ examples, where $d=\operatorname{VC}-\operatorname{dim}(C)$, then

$$
\operatorname{Pr}\left[\operatorname{err}\left(h_{A}\right)>\frac{1}{8}\right] \geq \frac{1}{8}
$$

This means that if given only $d / 2$ examples, then PAC learning is impossible for $\epsilon \leq 1 / 8$ and $\delta \leq 1 / 8$.

