COS 511: Theoretical Machine Learning

Homework \#2
Due: February 28, 2008
Sample size bounds and VC dimension

Problem 1

This problem explores another general method for bounding the error when the hypothesis space is infinite.

Some algorithms output hypotheses that can be represented by a small number of examples from the training set. For instance, suppose the domain is \mathbb{R} and we are learning a half-line of the form $x \geq a$ where a defines the half-line. A simple algorithm chooses the left most positive training example a and outputs the corresponding half-line, which is clearly consistent with the data. Thus, in this case, the hypothesis can be represented by a single training example.

More formally, let F be a function mapping labeled examples to concepts, and assume that algorithm A, when given training examples $\left(x_{1}, c\left(x_{1}\right)\right), \ldots,\left(x_{m}, c\left(x_{m}\right)\right)$ labeled by some unknown $c \in \mathcal{C}$, chooses some $i_{1}, \ldots, i_{k} \in\{1, \ldots, m\}$ and outputs the consistent hypothesis $F\left(\left(x_{i_{1}}, c\left(x_{i_{1}}\right)\right), \ldots,\left(x_{i_{k}}, c\left(x_{i_{k}}\right)\right)\right)$. In a sense, the algorithm has "compressed" the sample down to a sequence of just k of the m training examples.
a. [5] Give such an algorithm for axis-aligned hyper-rectangles in \mathbb{R}^{n} with $k=O(n)$. (An axis-aligned hyper-rectangle is a set of the form $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$. For $n=2$, this is the class of rectangles used repeatedly as an example in class.) Your algorithm should run in time polynomial in m and n.
b. [15] Returning to the general case, assume as usual that the examples are chosen at random from some distribution D. Also assume that the size k is fixed. Argue carefully that the error of the output hypothesis h, with probability at least $1-\delta$ satisfies the bound:

$$
\operatorname{err}_{D}(h) \leq O\left(\frac{\ln (1 / \delta)+k \ln m}{m-k}\right) .
$$

Problem 2

[15] Let the domain be \mathbb{R}^{d}, and consider the class \mathcal{C} of linear threshold functions passing through the origin. That is, each such function is defined by a vector $\mathbf{w} \in \mathbb{R}^{d}$ and is equal to 1 on points \mathbf{x} for which $\mathbf{w} \cdot \mathbf{x} \geq 0$, and 0 on all other points. Show that the VC-dimension of \mathcal{C} is exactly equal to d.

Problem 3

[15] For each $d=0,1,2, \ldots$, give an example of a class \mathcal{C} for which Sauer's Lemma is tight, i.e., for which the VC-dimension of \mathcal{C} is d, and, for each $m, \Pi_{\mathcal{C}}(m)=\sum_{i=0}^{d}\binom{m}{i}$.

