
1

1

Building the index

2

Review
• Have dictionary of terms
• (Inverted) index referenced by terms of dictionary
• An entry for a term in the index is the posting list for the term
• A posting list is of the (general) form:
([DocID 1st doc containing term; summary attributes w.r.t term;

(position term 1st occurs: attributes,
 …
 position term last occurs: attributes
)

],
…
[DocID last doc containing term; summary attributes w.r.t. term;

(position term 1st occurs: attributes,
 …
 position tern last occurs: attributes
)

]
)

2

3

Last time

• Given Inverted index, how compute the
results for a query
– Merge-based algorithms

• What data structure use for inverted
index?
– Hash table
– B+ tree

4

This time

• How construct inverted index from “raw”
document collection?

– Don’t worry about getting into final index
data structure

3

5

Preliminary decisions
• Define “document”: level of granularity?

– Book versus Chapter of book
– Individual html files versus combined files

that composed one Web page

• Define “term”
– Include phrases?

• How determine which adjacent words -- or all?
– Stop words?

6

Pre-processing text documents
• Give each document a unique ID: docID
• Tokenize text

– Distinguish terms from punctuation, etc.
• Normalize tokens

– Stemming
• Remove endings: plurals, possessives, “ing”,

– cats -> cat; accessible -> access
• Porter’s algorithm (1980)

– Lemmatization
• Use knowledge of language forms

– am, are, is -> be
• More sophisticated than stemming

(See Intro IR Chapter 2)

4

7

Construction of posting lists
• Overview

– “document” now means preprocessed document
– One pass through collection of documents
– Gather postings for each document
– Reorganize for final set of lists: one for each term

• Look at algorithms when can’t fit everything in
memory
– Main cost disk page reads and writes

• Terminology: disk block = disk page

8

Memory- disk management

• Have buffer in main memory
– Size = B disk pages
– Read from disk to buffer, page at a time

• Disk cost = 1
– Write from buffer to disk, page at at time

• Disk cost = 1

5

9

Algorithm: “Block Sort-based”
1. Repeat until entire collection read:

– Read documents, building
 (term, <attributes>, doc) tuples until buffer full
– Sort tuples in buffer by term value as primary,

doc as secondary
• Note tuples for one doc already together-use sort

algorithm that keeps appearance order for = keys
– Build posting lists for each unique term in buffer

• Re-writing of sorted info
– Write partial index to disk pages

2. Merge partial indexes on disk into full index

10

Merging Lists: General technique
• K sorted lists on disk to merge into one
• If K+1 <= B:

– Dedicate one buffer page for output
– Dedicate one buffer page for each list to merge

• K input buffer pages
– Algorithm:

Fill 1 buffer page from each list on disk
Repeat until merge complete:

Merge buffer input pages to output buffer pg
When output buffer pg full, write to disk
When input buffer pg empty, refill from its list

6

11

• If K+1 > B:
– Dedicate one buffer page for output
– B-1 buffer page for input from different lists
– Call lists to merge level-0 lists
– Algorithm
 j=0
 Repeat until one level-j list:

 Group level-j lists into groups of B-1 lists // K/(B-1) gps for j=0

 For each group, merge into one level-(j+1) list by:
 {Fill 1 buffer page from each level-j list in group
 Repeat until level-j merge complete:

Merge buffer input pages to output buffer pg
When output buffer pg full,
 write to group’s level-(j+1) list on disk
When input buffer pg empty, refill from its list

 }
j++

12

Application to
“Blocked Sort-based”

• Have to merge partial indexes
• Partial posting lists for one term must

be merged
– Concatenate

• Keep documents sorted within posting list

• If postings for one document broken
across partial lists, must merge

7

13

Aside: External Sorting

• Divide list into size-B blocks of
contiguous entries

• Read each block into buffer, sort, write
out to disk

• Now have L/B sorted sub-lists
where L is size of list in disk pages

• Merge sorted sub-lists into one list
• Number of disk page read/writes?

14

Distributed Algorithms

• Can easily assign different documents
to different machines

• Efficient?
• Goals

– Keep all machines busy
– Be able to replace badly-behaved

machines seamlessly!

8

15

How build inverted index a la Google
Start by building forward index:
• Split up collection into pieces to be worked on by

different machines
• Split up terms into ranges of terms

– designate a “barrel” for each range (64 in 1998)
– “barrels” conceptually organize data storage
– Each machine working on piece of collection has its own barrels
– each barrel is too large for main memory

• On one machine:
For each doc, put each (term, <attributes>, doc) tuple in barrel

designated for term
• This forward index still organized by doc ID

– Reading doc by doc

16

Forward index to inverted index

• Each barrel in r pieces if r processors worked
on forward index

• Process each barrel - one processor
– Sort each barrel piece by terms
– Construct partial posting lists for barrel piece
– Merge to make posting lists for terms in range

• Results in inverted index in pieces by term
ranges

• Barrel could be worked on by >1 processor

9

17

Distributed query processing

• Parallelize by distributing documents
randomly to pieces of index
– Pool of machines for each - choose one
– Why random?

18

Load balancing and reliability

• Scheduler machines assign tasks to
pools of machines and monitor
performance

