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Finding near-duplicate
documents

Finding duplicate or near duplicate documents

A general paradigm:
1. Define function f capturing contents of each document in one

number
“Hash function”, “signature”, “fingerprint”

2. Create <f(doci), ID of doci> pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having

the same f value or f values within a small threshold

Compare:  computing a similarity score on pairs of
documents
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Finding duplicate or near duplicate documents

A general paradigm:
1. Define function f capturing contents of each document in one

number
“Hash function”, “signature”, “sketch”,  “fingerprint”

2. Create <f(doci), ID of doci> pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having

the same f value or f values within a small threshold

Problem with “small threshold” ?

Finding duplicate or near duplicate documents

A general paradigm:
1. Define function f capturing contents of each document in one

number
“Hash function”, “signature”, “sketch”,  “fingerprint”

2. Create <f(doci), ID of doci> pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having

the same f value or f values within a small threshold
Problem with “small threshold” ?

How deal with <1, D1> <1.01, D2> <1.02, D3> …..<1.99, D100>
and threshold  .01  (using ≤ threshold) ?
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“Syntactic clustering”

We will look at this one example:
Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig,

Syntactic Clustering of the Web Sixth International WWW Conference, 1997.

• “syntactic similarity” versus semantic
Sequences of words

• Finding near duplicates
• Doc = sequence of words

Word = Token
• Uses sampling
• Similarity based on shingles
• Does compare documents

Shingles

• A w-shingle is a contiguous subsequence
of w words

• The w-shingling of doc D, S(D, w) is the
set of unique w-shingles of D
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Similarity of docs with shingles

For fixed w, resemblance of docs A and B :
r(A, B) = |S(A) ∩ S(B)|    /    |S(A) U S(B)|

For fixed w, containment of doc A in doc B :
C(A, B) = |S(A) ∩ S(B)|    /    |S(A)|

For fixed w, resemblance distance between docs A and B :
D(A, B) = 1- r(A, B)

Is a metric (triangle inequality)

Note we are now comparing documents!

Sketch of shingles
Want to estimate r and/or  c
Do this by calculating approximation on a sample of

shingles

• Fix w;  use some ordering to   totally order  all possible
w-shingles   (e.g. convert w-shingle to integer)

• For any W a set of w-shingles define:
MINS(W) =  Set of s smallest shingles in W if |W| ≥ s

W if |W| < s

And if actually interpret each shingle as an integer:
MODm(W) = set of shingles x in W with (x ≡ 0 mod m)
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Sketch of shingles continued

Let Π be a permutation of all w-shingles  (reorder),

For any doc A and chosen integer parameters s and m

We define sketches :
F(A) = MINS(Π(S(A)))               s random shingles of A
V(A) = MODm(Π(S(A)))

random sample of shingles of A with size depending on length
of A

Sketch is a sampling

Mathematics

Theorem:
 If Π is chosen uniformly at random then for fixed w, s and

m and any two docs A and B:
r(A, B) has the unbiased estimates:

1. |MINS (F(A) U F(B) )  ∩  F(A) ∩ F(B)|    /   | MINS (F(A) U F(B)) |
2. |V(A) ∩ V(B)|    /    |V(A) U V(B)|

c(A, B) has the unbiased estimate:
1. |V(A) ∩ V(B)|    /    |V(A)|

r(A, B) = |S(A) ∩ S(B)|    /    |S(A) U S(B)|
C(A, B) = |S(A) ∩ S(B)|    /    |S(A)|
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Algorithm used
1. Calculate sketch V(Di) for every doc Di

Denote | V(Di) | by cti

2. Calculate |V(Di) ∩ V(Dj)| = ctij for each non-
empty intersection:

i. Produce list of <shingle value, docID> pairs for all shingles in
the sketch for each document

ii. Sort the list by shingle value
iii. Produce all triples <ID(Di), ID(Dj), cti,j> for which cti,j>0

Note this is not linear-time for the list of docs for one shingle

3. Build clusters of similar/almost identical docs
Degree of similarity depends on threshold …

Clustering

1. Define docs to be similar if approximate resemblance
greater than  a predetermined threshold t:

ctij / (cti + ctj – ctij ) > t

2. Build graph of docs: edge between each pair of similar
docs

3. The clusters of similar docs are the connected
components in the graph
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Paradigm?

• Does compare docs, so not same as paradigm
we started with, but uses ideas

• Contents of doc captured by sketch – a set of
shingles (numbers)

• Similarity of docs scored by count of common
shingles for docs

• Don’t look at all doc pairs, look at all doc pairs
that share a shingle

• Uses clustering by similarity threshold

More efficient : super-shingles
“meta-sketch”
1. Sort shingles of a sketch
2. Compute the shingling of the sequence of shingles

Each original shingle now a token
Gives “supershingles”

3. “meta-sketch” = set of supershingles

One supershingle in common =>
                                                sequences of shingles in common

Documents with ≥1 supershingle in common considered similar

• Each supershingle for a doc. characterizes the doc
• Sort <supershingle, docID> pairs: docs sharing a supershingle

are similar =>  our first paradigm
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Pros and Cons of Super-shingles

+ Faster
- Problems with small documents – not enough

shingles
- Can’t do containment

Shingles of superset that are not in subset
break up sequence of shingles

Experiments (1996)

• 30 million HTML and text docs (150GB) from crawl of Web
• 10-word shingles
• 40-bit shingle “fingerprints” for random permutation
• Sample shingles using mod m=25
• 600 million shingles (3GB)
• Used count of shingles for similarity
• Max space used: 20GB when counting shared shingles
• Using threshold t = 50%, found

– 3.6 million clusters of 12.3 million docs
– 2.1 million clusters of identical docs – 5.3 million docs


