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Clustering Algorithms:
Divisive

hierarchical and flat
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Hierarchical Divisive: Template
1. Put all objects in one cluster
2.  Repeat until all clusters are singletons

a) choose a cluster to split
• what criterion?

b) replace the chosen cluster with the sub-clusters
• split into how many?
• how split?
• “reversing” agglomerative => split in two

• cutting operation: cut-based measures seem to
be a natural choice.

– focus on similarity across cut - lost similarity
•  not necessary to use a cut-based measure
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An Example: 1st cut
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An Example: 2nd cut
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An Example: stop at 3 clusters
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Compare k-means result
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Cut-based optimization

• weaken the connection between objects in
different clusters rather than strengthening
connection between objects within a cluster

• Are many cut-based measures
• We will look at one
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Inter / Intra cluster costs
Given:
• U = {v1, …, vn}, the set of all objects
• A partitioning clustering C1, C2, … Ck of the

objects:  U = Ui=1, …, k Ci .

Define:
• cutcost (Cp) =  ∑     sim(vi, vj).

• intracost(Cp) =  ∑    sim(vi, vj).

vi in Cp
vj in U-Cp

vi, vj in Cp
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Cost of a clustering
cost (C1, … , Ck) =

          ∑

• contribution each cluster: ratio external similarity to
internal similarity

min-max cut optimization
Find clustering C1, … , Ck that minimizes
           cost(C1, … , Ck)

p=1

k cutcost (Cp)
intracost (Cp)
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Simple example
• six objects
• similarity 1 if edge shown
• similarity 0 otherwise
• choice 1:

cost UNDEFINED + 1/4
• choice 2:

cost 1/1 + 1/3 = 4/3
• choice 3:

cost 1/2 + 1/2 = 1   *prefer balance
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Iterative Improvement Algorithm
1. Choose initial partition C1, … , Ck

2. repeat {
unlock all vertices
repeat {

choose some Ci at random
choose an unlocked vertex vj in Ci

move vj to that cluster, if any, such that move
gives maximum decrease in cost

lock vertex vj

} until all vertices locked
}until converge

12

Observations on algorithm

• heuristic
• uses randomness
• convergence usually improvement < some

chosen threshold between outer loop
iterations

• vertex “locking” insures that all vertices are
examined before examining any vertex twice

• there  are many variations of algorithm
• can use at each division of hierarchical

divisive algorithm with k=2
– more computation than an agglomerative merge
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Compare to k-means

• Similarities:
– number of clusters, k, is chosen in advance
– an initial clustering is chosen (possibly at random)
– iterative improvement is used to improve

clustering

• Important difference:
– min-max cut algorithm minimizes a cut-based cost
– k-means maximizes only similarity within a cluster

• ignores cost of cuts
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Another method: Spectral clustering
Brief overview
Given:
• k: number of clusters
• nxn object-object sim. matrix S of non-neg. values
Compute:
1. Laplacian matrix L from S  (straightforward computation)

– are variations in def. Laplacian
2. eigenvectors corresponding to k smallest eigenvalues
3. use eigenvectors to define clusters

– variety of ways to do this
– all involve another, simpler, clustering

• e.g. points on a line
Spectral clustering optimizes a cut measure

similar to min-max cut
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Hierarchical divisive revisited

• can use one of cut-based algorithms to
split a cluster

• how choose cluster to split next?
– if building entire tree, doesn’t matter
– if stopping a certain point, choose next

cluster based on measure optimizing
• e.g. for min-max cut, choose Ci with largest
   cutcost(Ci) / intracost(Ci)
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External measures

• comparing two clusterings as to
similarity

• if one clustering “correct”, one clustering
by an algorithm, measures how well
algorithm doing
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one measure motivated by
F-score in IR:

combining precision and recall
• Given:
a “correct” clustering S1, … Sk of the objects  (≡ relevant)
a computed clustering C1, … Ck of the objects  (≡ retrieved)

• Define:
precision of Cx w.r.t Sq = p(x,q) = |Sq ∩ Cx|  /  |Cx|

fraction of computed cluster that is “correct”

recall of Cx w.r.t Sq = r(x,q) = |Sq ∩ Cx|  /  |Sq|
fraction of a “correct” cluster found in a computed cluster
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Fscore of Cx w.r.t Sq = F(x,q) =
2r(x,q)*p(x,q)  /  ( r(x,q) + p(x,q) )

combine precision and recall  (Harmonic mean)

Fscore of {C1, C2, … Ck}  w.r.t Sq = F(q)  =
               max     F(x,q)

  x = 1,…, k

score of best computed cluster for Sq

Fscore of {C1, C2, … Ck}  w.r.t {S1, S2, … Sk} =              *desired measure
∑            (|Sq| / n ) *F(q)
q = 1, …, k

weighted average of best scores over all correct clusters
always ≤  1

• Perfect match of computed clusters to correct clusters gives
Fscore of  1


