Clustering Algorithms: Divisive hierarchical and flat

1. Put all objects in one cluster

- 2. Repeat until all clusters are singletons
 - a) choose a cluster to split
 - what criterion?
 - b) replace the chosen cluster with the sub-clusters
 - split into how many?
 - how split?
 - "reversing" agglomerative => split in two
- cutting operation: cut-based measures seem to be a natural choice.
 - focus on similarity across cut lost similarity
 - not necessary to use a cut-based measure

2

1

Cut-based optimization

- weaken the connection between objects in different clusters *rather than* strengthening connection between objects within a cluster
- Are many cut-based measures
- We will look at one

Inter / Intra cluster costs

Given:

- $U = \{v_1, ..., v_n\}$, the set of all objects
- A partitioning clustering C_1, C_2, \dots, C_k of the objects: $U = U_{i=1, \dots, k} C_i$.

Define:

- cutcost (C_p) = $\sum_{\substack{v_i \text{ in } C_p \\ v_j \text{ in } U C_p}} sim(v_i, v_j).$
- $intracost(C_p) = \sum_{v_i, v_j \text{ in } C_p} sim(v_i, v_j).$

8

7

Compare to k-means

- Similarities:
 - number of clusters, k, is chosen in advance
 - an initial clustering is chosen (possibly at random)
 - iterative improvement is used to improve clustering
- Important difference:
 - min-max cut algorithm minimizes a cut-based cost
 - k-means maximizes only similarity within a cluster
 - ignores cost of cuts

13

one measure motivated by F-score in IR: combining *precision* and *recall*

• Given:

a "correct" clustering S_1, \dots, S_k of the objects (\equiv relevant) a computed clustering C_1, \dots, C_k of the objects (\equiv retrieved)

• Define:

precision of C_x w.r.t $S_q = p(x,q) = |S_q \cap C_x| / |C_x|$ fraction of computed cluster that is "correct"

recall of C_x w.r.t $S_q = r(x,q) = |S_q \cap C_x| / |S_q|$ fraction of a "correct" cluster found in a computed cluster

17

Fscore of C_x w.r.t S_q = F(x,q) = 2r(x,q)*p(x,q) / (r(x,q) + p(x,q)) combine precision and recall (Harmonic mean)
Fscore of {C₁, C₂, ..., C_k} w.r.t S_q = F(q) = max F(x,q) x=1,..., k
Fscore of {C₁, C₂, ..., C_k} w.r.t {S₁, S₂, ..., S_k} = *desired measure ∑_{q=1}, ..., k
Fscore of {C₁, C₂, ..., C_k} w.r.t {S₁, S₂, ..., S_k} = *desired measure ∑_{q=1}, ..., k
enginted average of best scores over all correct clusters always ≤ 1
Perfect match of computed clusters to correct clusters gives Fscore of 1