
Scan Conversion

Adam Finkelstein & Tim Weyrich

Princeton University

COS 426, Spring 2008

1

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Scan Conversion

& Shading

P1

P2

P3

2

Overview

• Scan conversion
o Figure out which pixels to fill

• Shading
o Determine a color for every filled pixel

• Texture mapping
o Describe shading variation within polygon interiors

• Visible surface determination
o Figure out which surface is front-most at every pixel

3

Scan Conversion

• Render an image of a geometric primitive

by setting pixel colors

• Example: Filling the inside of a triangle

P1

P2

P3

void SetPixel(int x, int y, Color rgba)

4

Scan Conversion

• Render an image of a geometric primitive

by setting pixel colors

• Example: Filling the inside of a triangle

P1

P2

P3

void SetPixel(int x, int y, Color rgba)

5

Triangle Scan Conversion

• Properties of a good algorithm
o Symmetric
o Straight edges
o Antialiased edges
o No cracks between adjacent primitives
o MUST BE FAST!

P1

P2

P3

P4

6

Triangle Scan Conversion

• Properties of a good algorithm
o Symmetric
o Straight edges
o Antialiased edges
o No cracks between adjacent primitives
o MUST BE FAST!

P1

P2

P3

P4

7

Simple Algorithm

P1

P2

P3

void ScanTriangle(Triangle T, Color rgba){
 for each pixel P at (x,y){
 if (Inside(T, P))
 SetPixel(x, y, rgba);
 }
}

• Color all pixels inside triangle

8

Inside Triangle Test

• A point is inside a triangle if it is in the

positive halfspace of all three boundary lines
o Triangle vertices are ordered counter-clockwise
o Point must be on the left side of every boundary line

P

L1

L2

L3

9

Inside Triangle Test

Boolean Inside(Triangle T, Point P)
{
 for each boundary line L of T {
 Scalar d = L.a*P.x + L.b*P.y + L.c;
 if (d < 0.0) return FALSE;
 }
 return TRUE;
}

L1

L2

L3

10

Simple Algorithm

P1

P2

P3

void ScanTriangle(Triangle T, Color rgba){
 for each pixel P at (x,y){
 if (Inside(T, P))
 SetPixel(x, y, rgba);
 }
}

• What is bad about this algorithm?

11

Triangle Sweep-Line Algorithm

• Take advantage of spatial coherence
o Compute which pixels are inside using horizontal spans
o Process horizontal spans in scan-line order

• Take advantage of edge linearity
o Use edge slopes to update coordinates incrementally

dx
dy

12

Triangle Sweep-Line Algorithm

void ScanTriangle(Triangle T, Color rgba){
 for each edge pair {
 initialize xL, xR;

 compute dxL/dyL and dxR/dyR;

 for each scanline at y
 for (int x = xL; x <= xR; x++)

 SetPixel(x, y, rgba);
 xL += dxL/dyL;
 xR += dxR/dyR;

 }
}

Historical note:

Bresenham’s Algorithm
integer-only version
of line calculation
(good for hardware)

xL xR

dxL

dyL

dxR

dyR

13

Polygon Scan Conversion

• Fill pixels inside a polygon
o Triangle
o Quadrilateral
o Convex
o Star-shaped
o Concave
o Self-intersecting
o Holes

What problems do we encounter with arbitrary polygons?

14

Polygon Scan Conversion

• Need better test for points inside polygon
o Triangle method works only for convex polygons

Convex Polygon

L1

L2

L3

L4

L5

L1

L2

L3A

L4

L5

Concave Polygon

L3B

15

Inside Polygon Rule

Concave Self-Intersecting With Holes

• What is a good rule for which pixels are inside?

16

Inside Polygon Rule

Concave Self-Intersecting With Holes

• Odd-parity rule
o Any ray from P to infinity crosses odd number of edges

o What if you hit a vertex?

17

Polygon Sweep-Line Algorithm

• Incremental algorithm to find spans,

and determine insideness with odd parity rule
o Takes advantage of scanline coherence

xL xR

Triangle Polygon

18

Polygon Sweep-Line Algorithm

void ScanPolygon(Triangle T, Color rgba){
 sort edges by maxy
 make empty “active edge list”
 for each scanline (top-to-bottom) {
 insert/remove edges from “active edge list”
 update x coordinate of every active edge
 sort active edges by x coordinate
 for each pair of active edges (left-to-right)
 SetPixels(xi, xi+1, y, rgba);

 }
}

19

Hardware Scan Conversion

• Convert everything into triangles
o Scan convert the triangles

20

Overview

• Scan conversion
o Figure out which pixels to fill

• Shading
o Determine a color for each filled pixel

• Texture mapping
o Describe shading variation within polygon interiors

• Visible surface determination
o Figure out which surface is front-most at every pixel

21

Shading

• How do we choose a color for each filled pixel?

Emphasis on methods that can

be implemented in hardware

22

Ray Casting

• Simplest shading approach is to perform

independent lighting calculation for every pixel

23

Polygon Shading

• Can take advantage of spatial coherence
o Illumination calculations for pixels covered by same

primitive are related to each other

24

Polygon Shading Algorithms

• Flat Shading

• Gouraud Shading

• Phong Shading

25

Polygon Shading Algorithms

• Flat Shading

• Gouraud Shading

• Phong Shading

26

Flat Shading

• What if a faceted object is illuminated only by

directional light sources and is either diffuse or

viewed from infinitely far away

27

Flat Shading

• One illumination calculation per polygon
o Assign all pixels inside each polygon the same color

N

28

Flat Shading

• Objects look like they are composed of polygons
o OK for polyhedral objects
o Not so good for smooth surfaces

29

Polygon Shading Algorithms

• Flat Shading

• Gouraud Shading

• Phong Shading

30

Gouraud Shading

• What if smooth surface is represented by

polygonal mesh with a normal at each vertex?

Watt Plate 7

31

Gouraud Shading

• Method 1: One lighting calculation per vertex
o Assign pixels inside polygon by interpolating colors

computed at vertices

32

Gouraud Shading

• Bilinearly interpolate colors at vertices

down and across scan lines

33

Gouraud Shading

• Smooth shading over adjacent polygons
o Curved surfaces
o Illumination highlights
o Soft shadows

Mesh with shared normals at vertices

Watt Plate 7

34

Gouraud Shading

• Produces smoothly shaded polygonal mesh
o Piecewise linear approximation
o Need fine mesh to capture subtle lighting effects

Gouraud ShadingFlat Shading

35

Polygon Shading Algorithms

• Flat Shading

• Gouraud Shading

• Phong Shading

36

Phong Shading

• What if polygonal mesh is too coarse to capture

illumination effects in polygon interiors?

37

Phong Shading

• One lighting calculation per pixel
o Approximate surface normals for points inside polygons

by bilinear interpolation of normals from vertices

38

Phong Shading

• Bilinearly interpolate surface normals at vertices

down and across scan lines

39

Polygon Shading Algorithms

Gouraud Phong

Wireframe Flat

Watt Plate 7

40

Shading Issues

• Problems with interpolated shading:
o Polygonal silhouettes
o Perspective distortion
o Orientation dependence (due to bilinear interpolation)
o Problems computing shared vertex normals
o Problems at T-vertices

41

Overview

• Scan conversion
o Figure out which pixels to fill

• Shading
o Determine a color for each filled pixel

• Texture mapping
o Describe shading variation within polygon interiors

• Visible surface determination
o Figure out which surface is front-most at every pixel

42

Surface

Image
Texture

Textures

• Describe color variation in interior of 3D polygon
o When scan converting a polygon, vary pixel colors

according to values fetched from a texture

Angel Figure 9.3

43

Surface Textures

• Add visual detail to surfaces of 3D objects

Polygonal model

With surface texture

44

Surface Textures

• Add visual detail to surfaces of 3D objects

[Daren Horley]

45

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Texture mapping

46

Texture Mapping Overview

• Texture mapping methods
o Mapping
o Filtering
o Parameterization

• Texture mapping applications
o Modulation textures
o Illumination mapping
o Bump mapping
o Environment mapping
o Image-based rendering
o Non-photorealistic rendering

47

Texture Mapping

• Steps:
o Define texture
o Specify mapping from texture to surface
o Lookup texture values during scan conversion

(0,0)

(1,0)

(0,1)

u

v

x

y

Modeling
Coordinate

System

Image
Coordinate

System

s

t

Texture
Coordinate

System

48

Texture Mapping

• When scan convert, map from …
o image coordinate system (x,y) to
o modeling coordinate system (u,v) to
o texture image (t,s)

(0,0)

(1,0)

(1,1)

(0,1)

u

v

x

y

Modeling
Coordinate

System

Image
Coordinate

System

s

t

Texture
Coordinate

System

49

Texture Mapping

[Allison Klein]

• Texture mapping is a 2D projective transformation
o texture coordinate system: (t,s) to
o image coordinate system (x,y)

50

Texture Mapping

• Scan conversion
o Interpolate texture coordinates down/across scan lines
o Distortion due to bilinear interpolation approximation

» Cut polygons into smaller ones, or

» Perspective divide at each pixel

51

Texture Mapping

Linear interpolation
of texture coordinates

Correct interpolation
with perspective divide

Hill Figure 8.42

52

Texture Mapping Overview

• Texture mapping methods
o Mapping
o Filtering
o Parameterization

• Texture mapping applications
o Modulation textures
o Illumination mapping
o Bump mapping
o Environment mapping
o Image-based rendering
o Non-photorealistic rendering

53

Texture Filtering

Angel Figure 9.4

• Must sample texture to determine color

at each pixel in image

54

Texture Filtering

Angel Figure 9.5

• Aliasing is a problem

Point sampling Area filtering

55

Texture Filtering

• Ideally, use elliptically shaped convolution filters

In practice, use rectangles

56

Texture Filtering

Angel Figure 9.14

• Size of filter depends on projective warp
o Can prefiltering images

» Mip maps

» Summed area tables

Magnification Minification

57

Mip Maps

• Keep textures prefiltered at multiple resolutions
o For each pixel, linearly interpolate between

two closest levels (e.g., trilinear filtering)
o Fast, easy for hardware

58

Summed-area tables

• At each texel keep sum of all values down & right
o To compute sum of all values within a rectangle,

simply subtract two entries
o Better ability to capture very oblique projections
o But, cannot store values in a single byte

S1

S2

59

Texture Mapping Overview

• Texture mapping methods
o Mapping
o Filtering
o Parameterization

• Texture mapping applications
o Modulation textures
o Illumination mapping
o Bump mapping
o Environment mapping
o Image-based rendering
o Non-photorealistic rendering

60

Parameterization

geometry

+ =

image texture map

• Q: How do we decide where on the geometry
! each color from the image should go?

61

Option: Varieties of projections

[Paul Bourke]

62

Option: unfold the surface

[Piponi2000]

63

Option: make an atlas

[Sander2001]

charts atlas surface

64

Overview

• Texture mapping methods
o Mapping
o Filtering
o Parameterization

• Texture mapping applications
o Modulation textures
o Illumination mapping
o Bump mapping
o Environment mapping
o Image-based rendering

65

Modulation textures

Map texture values to scale factor

W
o

o
d

 t
ex

tu
re

Texture
value

66

Illumination Mapping

Map texture values to surface material parameter
o KA

o KD

o KS

o KT

o n

KT = T(s,t)

67

Bump Mapping

Texture values perturb surface normals

68

Bump Mapping

H&B Figure 14.100

69

Environment Mapping

Texture values are reflected off surface patch

H&B Figure 14.93

70

Image-Based Rendering

Map photographic textures to provide details for

coarsely detailed polygonal model

71

Solid textures

Texture values indexed

by 3D location (x,y,z)

• Expensive storage, or

• Compute on the fly,

e.g. Perlin noise !

72

Texture Mapping Summary

• Texture mapping methods
o Parameterization
o Mapping
o Filtering

• Texture mapping applications
o Modulation textures
o Illumination mapping
o Bump mapping
o Environment mapping
o Image-based rendering
o Volume textures

73

Overview

• Scan conversion
o Figure out which pixels to fill

• Shading
o Determine a color for each filled pixel

• Texture mapping
o Describe shading variation within polygon interiors

• Visible surface determination
o Figure out which surface is front-most at every pixel

74

• Make sure only front-most contributes to color

at every pixel

Visible Surface Determination

75

Depth sort

• “Painter"s algorithm”
o Sort surfaces in order of decreasing maximum depth
o Scan convert surfaces in back-to-front order,

overwriting pixels

A

BE D

C

!"#$%&'()$

"*"

76

3D Rendering Pipeline
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Depth sort

! Depth sort comments
o O(n log n)
o Better with frame coherence?
o Implemented in software
o Render every polygon
o Often use BSP-tree or

static list ordering

77

Scan-Line Algorithm

• For each scan line, construct and sort spans

'+,-&./-"

012

013

014

015

"6,7#."&'#,-

01389 01589

78

Scan-Line Algorithm

• For each scan line, construct and sort spans
o Sort by depths within each scan line

'+,-&./-"

012

013

014

015

01:
01:

01: 01:

"6,7#."&'#,-'

01389 01589

01: 01:

79

Scan-Line Algorithm
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Scan line

! Scan-line comments

+ Coherence among along scan lines

+ Only shade each pixel once

- Requires access to all polygons

- Not suitable for hardware pipeline
o Commonly used in software

80

Z-Buffer

• Color & depth of closest object for every pixel
o Update only pixels whose depth is closer than in buffer
o Depths are interpolated from vertices, just like colors

81

Z-Buffer
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Z-Buffer

! Z-buffer comments

+ Polygons rasterized in any order

+ Process one polygon at a time

+ Suitable for hardware pipeline

- Requires extra memory for z-buffer

- Subject to aliasing (A-buffer)
o Commonly in hardware

82

Hidden Surface Removal Algorithms

[Sutherland ‘74]

83

Summary

• Scan conversion
o Sweep-line algorithm

• Shading algorithms
o Flat, Gouraud

• Texture mapping
o Mipmaps

• Visibility determination
o Z-buffer

This is all in hardware

84

Summary
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Scan Conversion

& Shading

P1

P2

P3

85

PS: Programmable GPUs
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Vertex Programs

(everything before scan)

Fragment

Programs

Rasterization
Lighting
Texture
Z-Buffer

Composite

}

}

A.K.A.

“Shaders”

86

