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Overview

• Scan conversion
o Figure out which pixels to fill

• Shading
o Determine a color for every filled pixel

• Texture mapping
o Describe shading variation within polygon interiors

• Visible surface determination
o Figure out which surface is front-most at every pixel
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Scan Conversion

• Render an image of a geometric primitive 

by setting pixel colors

• Example: Filling the inside of a triangle

P1

P2

P3

void SetPixel(int x, int y, Color rgba)
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Triangle Scan Conversion

• Properties of a good algorithm
o Symmetric
o Straight edges
o Antialiased edges
o No cracks between adjacent primitives
o MUST BE FAST!
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Triangle Scan Conversion

• Properties of a good algorithm
o Symmetric
o Straight edges
o Antialiased edges
o No cracks between adjacent primitives
o MUST BE FAST!
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Simple Algorithm

P1

P2

P3

void ScanTriangle(Triangle T, Color rgba){
 for each pixel P at (x,y){
  if (Inside(T, P)) 
   SetPixel(x, y, rgba);
 }
}

• Color all pixels inside triangle 
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Inside Triangle Test

• A point is inside a triangle if it is in the 

positive halfspace of all three boundary lines
o Triangle vertices are ordered counter-clockwise
o Point must be on the left side of every boundary line
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Inside Triangle Test

Boolean Inside(Triangle T, Point P)
{
 for each boundary line L of T {
  Scalar d = L.a*P.x + L.b*P.y + L.c;
  if (d < 0.0) return FALSE;
 }
 return TRUE;
}
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Simple Algorithm

P1

P2

P3

void ScanTriangle(Triangle T, Color rgba){
 for each pixel P at (x,y){
  if (Inside(T, P)) 
   SetPixel(x, y, rgba);
 }
}

• What is bad about this algorithm? 
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Triangle Sweep-Line Algorithm

• Take advantage of spatial coherence
o Compute which pixels are inside using horizontal spans
o Process horizontal spans in scan-line order

• Take advantage of edge linearity
o Use edge slopes to update coordinates incrementally

dx
dy
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Triangle Sweep-Line Algorithm

void ScanTriangle(Triangle T, Color rgba){
 for each edge pair {
  initialize xL, xR;

  compute dxL/dyL and dxR/dyR;

  for each scanline at y  
        for (int x = xL; x <= xR; x++) 

    SetPixel(x, y, rgba);
     xL += dxL/dyL;
     xR += dxR/dyR;

 }
}

Historical note:

 
Bresenham’s Algorithm
integer-only version
of line calculation
(good for hardware)

xL xR

dxL

dyL

dxR

dyR
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Polygon Scan Conversion

• Fill pixels inside a polygon
o Triangle
o Quadrilateral
o Convex
o Star-shaped
o Concave
o Self-intersecting
o Holes

What problems do we encounter with arbitrary polygons?

14

Polygon Scan Conversion

• Need better test for points inside polygon
o Triangle method works only for convex polygons

Convex Polygon
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L3B
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Inside Polygon Rule

Concave Self-Intersecting With Holes

• What is a good rule for which pixels are inside?
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Inside Polygon Rule

Concave Self-Intersecting With Holes

• Odd-parity rule
o Any ray from P to infinity crosses odd number of edges

o What if you hit a vertex?
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Polygon Sweep-Line Algorithm

• Incremental algorithm to find spans, 

and determine insideness with odd parity rule
o Takes advantage of scanline coherence

xL xR

Triangle Polygon
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Polygon Sweep-Line Algorithm

void ScanPolygon(Triangle T, Color rgba){
 sort edges by maxy
 make empty “active edge list”
 for each scanline (top-to-bottom) {   
     insert/remove edges from “active edge list”
  update x coordinate of every active edge
   sort active edges by x coordinate
  for each pair of active edges (left-to-right)
   SetPixels(xi, xi+1, y, rgba);

  }
}
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Hardware Scan Conversion

• Convert everything into triangles
o Scan convert the triangles
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Overview

• Scan conversion
o Figure out which pixels to fill

• Shading
o Determine a color for each filled pixel

• Texture mapping
o Describe shading variation within polygon interiors

• Visible surface determination
o Figure out which surface is front-most at every pixel
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Shading

• How do we choose a color for each filled pixel? 

Emphasis on methods that can 

be implemented in hardware 
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Ray Casting

• Simplest shading approach is to perform 

independent lighting calculation for every pixel

23

Polygon Shading

• Can take advantage of spatial coherence
o Illumination calculations for pixels covered by same 

primitive are related to each other
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Polygon Shading Algorithms

• Flat Shading

• Gouraud Shading

• Phong Shading
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Polygon Shading Algorithms

• Flat Shading

• Gouraud Shading

• Phong Shading
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Flat Shading

• What if a faceted object is illuminated only by 

directional light sources and is either diffuse or 

viewed from infinitely far away
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Flat Shading

• One illumination calculation per polygon 
o Assign all pixels inside each polygon the same color

N
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Flat Shading

• Objects look like they are composed of polygons
o OK for polyhedral objects
o Not so good for smooth surfaces
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Polygon Shading Algorithms

• Flat Shading

• Gouraud Shading

• Phong Shading
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Gouraud Shading

• What if smooth surface is represented by  

polygonal mesh with a normal at each vertex?

Watt Plate 7
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Gouraud Shading

• Method 1: One lighting calculation per vertex
o Assign pixels inside polygon by interpolating colors 

computed at vertices
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Gouraud Shading

• Bilinearly interpolate colors at vertices

down and across scan lines
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Gouraud Shading

• Smooth shading over adjacent polygons
o Curved surfaces
o Illumination highlights
o Soft shadows

Mesh with shared normals at vertices

Watt Plate 7
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Gouraud Shading

• Produces smoothly shaded polygonal mesh
o Piecewise linear approximation 
o Need fine mesh to capture subtle lighting effects

Gouraud ShadingFlat Shading
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Polygon Shading Algorithms

• Flat Shading

• Gouraud Shading

• Phong Shading
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Phong Shading

• What if polygonal mesh is too coarse to capture 

illumination effects in polygon interiors?
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Phong Shading

• One lighting calculation per pixel
o Approximate surface normals for points inside polygons 

by bilinear interpolation of normals from vertices

38

Phong Shading

• Bilinearly interpolate surface normals at vertices 

down and across scan lines
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Polygon Shading Algorithms

Gouraud Phong

Wireframe Flat

Watt Plate 7

40

Shading Issues

• Problems with interpolated shading:
o Polygonal silhouettes
o Perspective distortion
o Orientation dependence (due to bilinear interpolation)
o Problems computing shared vertex normals
o Problems at T-vertices
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Overview

• Scan conversion
o Figure out which pixels to fill

• Shading
o Determine a color for each filled pixel

• Texture mapping
o Describe shading variation within polygon interiors

• Visible surface determination
o Figure out which surface is front-most at every pixel
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Surface

Image
Texture

Textures

• Describe color variation in interior of 3D polygon
o When scan converting a polygon, vary pixel colors 

according to values fetched from a texture

Angel Figure 9.3
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Surface Textures

• Add visual detail to surfaces of 3D objects

Polygonal model

With surface texture
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Surface Textures

• Add visual detail to surfaces of 3D objects

[Daren Horley]
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Texture Mapping Overview

• Texture mapping methods
o Mapping
o Filtering
o Parameterization

• Texture mapping applications
o Modulation textures
o Illumination mapping
o Bump mapping
o Environment mapping
o Image-based rendering
o Non-photorealistic rendering
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Texture Mapping

• Steps:
o Define texture
o Specify mapping from texture to surface
o Lookup texture values during scan conversion
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Texture Mapping

• When scan convert, map from …
o image coordinate system (x,y) to
o modeling coordinate system (u,v) to
o texture image (t,s)
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Texture Mapping

[Allison Klein]

• Texture mapping is a 2D projective transformation
o texture coordinate system: (t,s) to
o image coordinate system (x,y)
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Texture Mapping

• Scan conversion
o Interpolate texture coordinates down/across scan lines
o Distortion due to bilinear interpolation approximation

» Cut polygons into smaller ones, or

» Perspective divide at each pixel
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Texture Mapping

Linear interpolation
of texture coordinates

Correct interpolation
with perspective divide

Hill Figure 8.42
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Texture Mapping Overview

• Texture mapping methods
o Mapping
o Filtering
o Parameterization

• Texture mapping applications
o Modulation textures
o Illumination mapping
o Bump mapping
o Environment mapping
o Image-based rendering
o Non-photorealistic rendering
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Texture Filtering

Angel Figure 9.4

• Must sample texture to determine color 

at each pixel in image
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Texture Filtering

Angel Figure 9.5

• Aliasing is a problem

Point sampling Area filtering
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Texture Filtering

• Ideally, use elliptically shaped convolution filters

In practice, use rectangles
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Texture Filtering

Angel Figure 9.14

• Size of filter depends on projective warp
o Can prefiltering images 

» Mip maps

» Summed area tables

Magnification Minification
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Mip Maps

• Keep textures prefiltered at multiple resolutions
o For each pixel, linearly interpolate between 

two closest levels (e.g., trilinear filtering) 
o Fast, easy for hardware
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Summed-area tables

• At each texel keep sum of all values down & right
o To compute sum of all values within a rectangle,

simply subtract two entries
o Better ability to capture very oblique projections
o But, cannot store values in a single byte

S1

S2
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Texture Mapping Overview

• Texture mapping methods
o Mapping
o Filtering
o Parameterization

• Texture mapping applications
o Modulation textures
o Illumination mapping
o Bump mapping
o Environment mapping
o Image-based rendering
o Non-photorealistic rendering
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Parameterization

geometry

+ =

image texture map

• Q: How do we decide where on the geometry
! each color from the image should go?
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Option: Varieties of projections

[Paul Bourke]
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Option: unfold the surface

[Piponi2000]
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Option: make an atlas

[Sander2001]

charts atlas surface
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Overview

• Texture mapping methods
o Mapping
o Filtering
o Parameterization

• Texture mapping applications
o Modulation textures
o Illumination mapping
o Bump mapping
o Environment mapping
o Image-based rendering
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Modulation textures

Map texture values to scale factor

W
o
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Texture
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Illumination Mapping

Map texture values to surface material parameter
o KA

o KD

o KS

o KT

o n

KT = T(s,t)
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Bump Mapping

Texture values perturb surface normals 
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Bump Mapping

H&B Figure 14.100
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Environment Mapping

Texture values are reflected off surface patch 

H&B Figure 14.93
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Image-Based Rendering

Map photographic textures to provide details for 

coarsely detailed polygonal model
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Solid textures

Texture values indexed 

by 3D location (x,y,z)

• Expensive storage, or

• Compute on the fly,

e.g. Perlin noise !
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Texture Mapping Summary

• Texture mapping methods
o Parameterization
o Mapping
o Filtering

• Texture mapping applications
o Modulation textures
o Illumination mapping
o Bump mapping
o Environment mapping
o Image-based rendering
o Volume textures
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Overview

• Scan conversion
o Figure out which pixels to fill

• Shading
o Determine a color for each filled pixel

• Texture mapping
o Describe shading variation within polygon interiors

• Visible surface determination
o Figure out which surface is front-most at every pixel
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• Make sure only front-most contributes to color 

at every pixel

Visible Surface Determination
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Depth sort

• “Painter"s algorithm”
o Sort surfaces in order of decreasing maximum depth
o Scan convert surfaces in back-to-front order,

overwriting pixels

A

BE D

C
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"*"
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Depth sort

! Depth sort comments
o O(n log n)
o Better with frame coherence?
o Implemented in software
o Render every polygon
o Often use BSP-tree or

static list ordering
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Scan-Line Algorithm

• For each scan line, construct and sort spans
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Scan-Line Algorithm

• For each scan line, construct and sort spans
o Sort by depths within each scan line
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Scan-Line Algorithm
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Scan line

! Scan-line comments

+ Coherence among along scan lines

+ Only shade each pixel once

- Requires access to all polygons

- Not suitable for hardware pipeline
o Commonly used in software
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Z-Buffer

• Color & depth of closest object for every pixel
o Update only pixels whose depth is closer than in buffer
o Depths are interpolated from vertices, just like colors
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Z-Buffer
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Z-Buffer

! Z-buffer comments

+ Polygons rasterized in any order

+ Process one polygon at a time

+ Suitable for hardware pipeline

- Requires extra memory for z-buffer

- Subject to aliasing (A-buffer)
o Commonly in hardware
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Hidden Surface Removal Algorithms

[Sutherland ‘74]
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Summary

• Scan conversion
o Sweep-line algorithm

• Shading algorithms
o Flat, Gouraud

• Texture mapping
o Mipmaps

• Visibility determination
o Z-buffer

This is all in hardware
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PS: Programmable GPUs
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Vertex Programs

(everything before scan)

Fragment

Programs

Rasterization
Lighting
Texture
Z-Buffer

Composite

}

}

A.K.A.

“Shaders”
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