
3D Polygon

Rendering Pipeline

Adam Finkelstein & Tim Weyrich

Princeton University

COS 426, Spring 2008

1

3D Rendering Scenarios

• Batch
o One image generated with as much quality as possible

for a particular set of rendering parameters

! Take as much time as is needed (minutes)

! Useful for photorealistism, movies, etc.

• Interactive
o Images generated in fraction of a second (<1/10)

as user controls rendering parameters (e.g., camera)

! Achieve highest quality possible in given time

! Useful for visualization, games, etc.

rayview

2

3D Polygon Rendering

• Many applications use rendering of 3D polygons

with direct illumination

3

3D Polygon Rendering

• Many applications use rendering of 3D polygons

with direct illumination

4

Ray Casting Revisited

• For each sample …
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color of sample based on surface radiance

More efficient algorithms

utilize spatial coherence!

5

3D Polygon Rendering

• We can render polygons faster if we take

advantage of spatial coherence

6

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

This is a pipelined

sequence of operations

to draw a 3D primitive

into a 2D image

7

GPU Architecture

GeForce 6 Series Architecture GPU Gems 2, NVIDIA

8

GPU Architecture

Xbox360, ATI

9

GPU Architecture

GPU Gems 2, NVIDIA

GeForce 6 Series Architecture

10

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

This is a pipelined

sequence of operations

to draw a 3D primitive

into a 2D image

11

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

OpenGL executes steps

of 3D rendering pipeline

for each polygon

glBegin(GL_POLYGON);
glVertex3f(0.0, 0.0, 0.0);
glVertex3f(1.0, 0.0, 0.0);
glVertex3f(1.0, 1.0, 1.0);
glVertex3f(0.0, 1.0, 1.0);
glEnd();

12

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system

13

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system

Illuminate according to lighting and reflectance

14

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Illuminate according to lighting and reflectance

15

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Illuminate according to lighting and reflectance

16

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Clip primitives outside camera!s view

Transform into 2D camera coordinate system

Illuminate according to lighting and reflectance

17

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Clip primitives outside camera!s view

Transform into 2D camera coordinate system

Illuminate according to lighting and reflectance

Transform into image coordinate system

18

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Draw pixels (includes texturing, hidden surface, ...)

Clip primitives outside camera!s view

Transform into 2D camera coordinate system

Illuminate according to lighting and reflectance

Transform into image coordinate system

19

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Transform into 3D world coordinate system

Transform into 3D camera coordinate system

Draw pixels (includes texturing, hidden surface, ...)

Clip primitives outside camera!s view

Transform into 2D camera coordinate system

Illuminate according to lighting and reflectance

Transform into image coordinate system

20

Transformations

Modeling
Transformation

Viewing
Transformation

2D Image Coordinates

Projection
Transformation

Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

Transformations map points from

one coordinate system to another

p(x,y,z)

p!(x!,y!)

3D World
Coordinates

3D Camera
Coordinates

3D Object
Coordinates

x

z

y

21

Viewing Transformations

Modeling
Transformation

Viewing
Transformation

2D Image Coordinates

Projection
Transformation

Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p!(x!,y!)

Viewing Transformations

22

Viewing Transformation

• Mapping from world to camera coordinates
o Eye position maps to origin
o Right vector maps to X axis
o Up vector maps to Y axis
o Back vector maps to Z axis

x

y

z

World

right
up

back

Camera

View
plane

23

Camera Coordinates

Camera right vector

maps to X axis

Camera up vector

maps to Y axis

Camera back vector

maps to Z axis

(pointing out of page)

• Canonical coordinate system
o Convention is right-handed (looking down -z axis)
o Convenient for projection, clipping, etc.

x

y

z

24

Finding the viewing transformation

• We have the camera (in world coordinates)

• We want T taking objects from world to camera

• Trick: find T-1 taking objects in camera to world

?

25

Finding the Viewing Transformation

• Trick: map from camera coordinates to world
o Origin maps to eye position
o Z axis maps to Back vector
o Y axis maps to Up vector
o X axis maps to Right vector

• This matrix is T-1 so we invert it to get T … easy!

26

Viewing Transformations

Modeling
Transformation

Viewing
Transformation

2D Image Coordinates

Projection
Transformation

Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p!(x!,y!)

Viewing Transformations

27

Projection

• General definition:
o Transform points in n-space to m-space (m<n)

• In computer graphics:
o Map 3D camera coordinates to 2D screen coordinates

28

Taxonomy of Projections

FVFHP Figure 6.10

29

Taxonomy of Projections

FVFHP Figure 6.10

30

Parallel Projection

Angel Figure 5.4

• Center of projection is at infinity
o Direction of projection (DOP) same for all points

DOP

View

Plane

31

Orthographic Projections

Angel Figure 5.5Top Side

Front

• DOP perpendicular to view plane

32

Oblique Projections

H&B Figure 12.24

• DOP not perpendicular to view plane

Cavalier

(DOP ! = 45
o
)

Cabinet

(DOP ! = 63.4
o
)

33

Parallel Projection View Volume

H&B Figure 12.30

34

Parallel Projection Matrix

• General parallel projection transformation:

35

Taxonomy of Projections

FVFHP Figure 6.10

36

Perspective Projection

Angel Figure 5.9

• Map points onto “view plane” along “projectors”

emanating from “center of projection” (COP)

Center of

Projection
View

Plane

P
ro

je
ct

or
s

37

Perspective Projection

Angel Figure 5.10

3-Point
Perspective

2-Point
Perspective

1-Point
Perspective

• How many vanishing points?

38

Perspective Projection View Volume

H&B Figure 12.30

View

Plane

39

Perspective Projection

• Compute 2D coordinates from 3D coordinates

with similar triangles

(0,0,0) z

-y

-z

y

-D

(x,y,z)

View

Plane

-z

What are the coordinates

of the point resulting from

projection of (x,y,z) onto

the view plane?

40

Perspective Projection

• Compute 2D coordinates from 3D coordinates

with similar triangles

(0,0,0) z

-y

-z

y

-D

(x,y,z)

View

Plane

-z

(xD/z, yD/z)

41

Perspective Projection Matrix

• 4x4 matrix representation?

42

Perspective Projection Matrix

• 4x4 matrix representation?

43

Perspective Projection Matrix

• 4x4 matrix representation?

44

Taxonomy of Projections

FVFHP Figure 6.10

45

Perspective vs. Parallel

• Perspective projection
+ Size varies inversely with distance - looks realistic

– Distance and angles are not (in general) preserved

– Parallel lines do not (in general) remain parallel

• Parallel projection
+ Good for exact measurements

+ Parallel lines remain parallel

– Angles are not (in general) preserved

– Less realistically looking

46

Classical Projections

Angel Figure 5.3

47

Viewing Transformations Summary

• Camera transformation
o Map 3D world coordinates to 3D camera coordinates
o Matrix has camera vectors as rows

• Projection transformation
o Map 3D camera coordinates to 2D screen coordinates
o Two types of projections:

! Parallel

! Perspective

48

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

49

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

50

2D Rendering Pipeline

Viewport
Transformation

Scan
Conversion

Clipping

2D Primitives

Image

Clip portions of geometric primitives

residing outside the window

Fill pixels representing primitives

in screen coordinates

Transform the clipped primitives

from screen to image coordinates

3D Primitives

51

2D Rendering Pipeline

Viewport
Transformation

Scan
Conversion

Clipping

2D Primitives

Image

Clip portions of geometric primitives

residing outside the window

Fill pixels representing primitives

in screen coordinates

Transform the clipped primitives

from screen to image coordinates

3D Primitives

52

Clipping

• Avoid drawing parts of primitives outside window
o Window defines part of scene being viewed
o Must draw geometric primitives only inside window

Screen Coordinates

Window

53

Clipping

• Avoid drawing parts of primitives outside window
o Window defines part of scene being viewed
o Must draw geometric primitives only inside window

Viewing

Window

54

Clipping

• Avoid drawing parts of primitives outside window
o Points
o Lines
o Polygons
o Circles
o etc.

Viewing

Window

55

Point Clipping

Window

wx1 wx2

wy2

wy1

(x,y)

• Is point (x,y) inside the clip window?

inside =
 (x >= wx1) &&
 (x <= wx2) &&
 (y >= wy1) &&
 (y <= wy2);

56

Line Clipping

• Find the part of a line inside the clip window

P1

P10

P9

P8

P7

P4P3

P6

P5

P2

Before Clipping

57

P!8

P!7

P4P3

P6

P!5

After Clipping

Line Clipping

• Find the part of a line inside the clip window"

58

Cohen Sutherland Line Clipping

• Use simple tests to classify easy cases first

P1

P10

P9

P8

P7

P4P3

P6

P5

P2

59

Cohen Sutherland Line Clipping

• Classify some lines quickly by AND of bit codes

representing regions of two endpoints (must be 0)

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P1

P10

P9

P8

P7

P4P3

P6

P5

P2

60

Cohen Sutherland Line Clipping

• Classify some lines quickly by AND of bit codes

representing regions of two endpoints (must be 0)

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P1

P10

P9

P8

P7

P4P3

P6

P5

P2

61

Cohen Sutherland Line Clipping

• Classify some lines quickly by AND of bit codes

representing regions of two endpoints (must be 0)

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P5

62

Cohen Sutherland Line Clipping

• Classify some lines quickly by AND of bit codes

representing regions of two endpoints (must be 0)

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P5

63

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P5

64

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P5

65

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P!5

66

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P!5

67

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P!5

68

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P!5

69

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P!7

P4P3

P6

P!5

70

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P!7

P4P3

P6

P!5

71

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P!8

P!7

P4P3

P6

P!5

72

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P!8

P!7

P4P3

P6

P!5

73

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P!8

P!7

P4P3

P6

P!5

74

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P!8

P!7

P4P3

P6

P!5

75

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P!8

P!7

P4P3

P6

P!5

76

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P!8

P!7

P4P3

P6

P!5

77

Cohen-Sutherland Line Clipping

• Compute interesections with window boundary for

lines that can!t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P!8

P!7

P4P3

P6

P!5

78

Clipping

• Avoid drawing parts of primitives outside window
o Points
o Lines
o Polygons
o Circles
o etc.

2D Screen Coordinates

Window

79

Polygon Clipping

• Find the part of a polygon inside the clip window?

Before Clipping

80

Polygon Clipping

• Find the part of a polygon inside the clip window?

After Clipping

81

Sutherland Hodgeman Clipping

• Clip to each window boundary one at a time

82

Sutherland Hodgeman Clipping

• Clip to each window boundary one at a time

83

Sutherland Hodgeman Clipping

• Clip to each window boundary one at a time

84

Sutherland Hodgeman Clipping

• Clip to each window boundary one at a time

85

Sutherland Hodgeman Clipping

• Clip to each window boundary one at a time

86

Clipping to a Boundary

• Do inside test for each point in sequence,

Insert new points when cross window boundary,

Remove points outside window boundary

Outside

Inside

Window

Boundary

P1

P2

P5

P4

P3

87

Clipping to a Boundary

• Do inside test for each point in sequence,

Insert new points when cross window boundary,

Remove points outside window boundary

Outside

Inside

Window

Boundary

P1

P2

P5

P4

P3

88

Clipping to a Boundary

• Do inside test for each point in sequence,

Insert new points when cross window boundary,

Remove points outside window boundary

Outside

Inside

Window

Boundary

P1

P2

P5

P4

P3

89

Clipping to a Boundary

• Do inside test for each point in sequence,

Insert new points when cross window boundary,

Remove points outside window boundary

Outside

Inside

Window

Boundary

P1

P2

P5

P4

P3

90

Clipping to a Boundary

• Do inside test for each point in sequence,

Insert new points when cross window boundary,

Remove points outside window boundary

Outside

Inside

Window

Boundary

P1

P2

P5

P4

P3

P!

91

Clipping to a Boundary

• Do inside test for each point in sequence,

Insert new points when cross window boundary,

Remove points outside window boundary

Outside

Inside

Window

Boundary

P1

P2

P5

P4

P3

P!

92

Clipping to a Boundary

• Do inside test for each point in sequence,

Insert new points when cross window boundary,

Remove points outside window boundary

Outside

Inside

Window

Boundary

P1

P2

P5

P4

P3

P!

93

Clipping to a Boundary

• Do inside test for each point in sequence,

Insert new points when cross window boundary,

Remove points outside window boundary

Outside

Inside

Window

Boundary

P1

P2

P5

P4

P3

P! P!!

94

Clipping to a Boundary

• Do inside test for each point in sequence,

Insert new points when cross window boundary,

Remove points outside window boundary

Outside

Inside

Window

Boundary

P1

P2

P! P!!

95

2D Rendering Pipeline

Viewport
Transformation

Scan
Conversion

Clipping

2D Primitives

Image

Clip portions of geometric primitives

residing outside the window

Fill pixels representing primitives

in screen coordinates

Transform the clipped primitives

from screen to image coordinates

3D Primitives

96

Viewport Transformation

• Transform 2D geometric primitives from

screen coordinate system (normalized device

coordinates) to image coordinate system (pixels)

ImageScreen

Viewport

Window

97

Viewport Transformation

vx1 vx2
vy1

vy2

wx1 wx2
wy1

wy2
Window Viewport

Screen Coordinates Image Coordinates

(wx,wy) (vx,vy)

vx = vx1 + (wx - wx1) * (vx2 - vx1) / (wx2 - wx1);
vy = vy1 + (wy - wy1) * (vy2 - vy1) / (wy2 - wy1);

• Window-to-viewport mapping

98

Summary of Transformations

Modeling
Transformation

Viewing
Transformation

2D Image Coordinates

Projection
Transformation

Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p!(x!,y!)

Viewing transformations

Modeling transformation

Viewport transformation

99

Summary
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Viewing

Window

100

Next Time
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Scan Conversion!

P1

P2

P3

101

