
Ray Casting

Adam Finkelstein & Tim Weyrich

Princeton University

COS 426, Spring 2008

1

3D Rendering

• The color of each pixel on the view plane

depends on the radiance emanating from

visible surfaces

View plane

Eye position

Simplest method

is ray casting

Rays
through

view plane

2

Ray Casting

• For each sample …
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color sample based on surface radiance

3

Ray Casting

• For each sample …
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color sample based on surface radiance

Samples on
view planeEye position

Rays
through

view plane

4

Ray Casting

• Rather traditional implementation:

A
.
D

ü
re

r,
 1

6
th
 c

e
n
tu

ry

5

Ray Casting

• Simple implementation in C++:

Image RayCast(Scene scene, int width, int height)

{

 Image image = new Image(width, height);

 for (int i = 0; i < width; i++) {

 for (int j = 0; j < height; j++) {

 Ray ray = ConstructRayThroughPixel(scene.camera, i, j);

 Intersection hit = FindIntersection(ray, scene);

 image[i][j] = GetColor(scene, ray, hit);

 }

 }

 return image;

}

6

Ray Casting

• Simple implementation:

Image RayCast(Scene scene, int width, int height)

{

 Image image = new Image(width, height);

 for (int i = 0; i < width; i++) {

 for (int j = 0; j < height; j++) {

 Ray ray = ConstructRayThroughPixel(scene.camera, i, j);

 Intersection hit = FindIntersection(ray, scene);

 image[i][j] = GetColor(scene, ray, hit);

 }

 }

 return image;

}

7

Constructing Ray Through a Pixel

right

back

Up direction

P0

towards

View
Plane

P

V

Ray: P = P0 + tV

8

Constructing Ray Through a Pixel

• 2D Example

d

! towardsP0

right

right = towards x up

! = frustum half-angle

d = distance to view plane

P1 = P0 + d*towards – d*tan(!)*right

P2 = P0 + d*towards + d*tan(!)*right

P1

P2

2
*
d
*
tan

(!
)

P

P = P1 + ((i + 0.5) / width) * (P2 - P1)

V = (P - P0) / ||P - P0 ||

V

Ray: P = P0 + tV

9

Ray Casting

• Simple implementation:

Image RayCast(Scene scene, int width, int height)

{

 Image image = new Image(width, height);

 for (int i = 0; i < width; i++) {

 for (int j = 0; j < height; j++) {

 Ray ray = ConstructRayThroughPixel(scene.camera, i, j);

 Intersection hit = FindIntersection(ray, scene);

 image[i][j] = GetColor(scene, ray, hit);

 }

 }

 return image;

}

10

Ray-Scene Intersection

• Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

• Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions

» Uniform grids

» Octrees

» BSP trees

11

Ray-Sphere Intersection

Ray: P = P0 + tV

Sphere: |P - O|2 - r 2 = 0

P0

V

O

P

r

P!

12

Ray-Sphere Intersection I

Ray: P = P0 + tV

Sphere: |P - O|2 - r 2 = 0

Substituting for P, we get:

" |P0 + tV - O|2 - r 2 = 0

Solve quadratic equation:

" at2 + bt + c = 0

where:

" a = 1

" b = 2 V • (P0 - O)

" c = |P0 - C|2 - r 2 = 0

P0

V

O

P

r

P!

Algebraic Method

P = P0 + tV

13

Ray-Sphere Intersection II

Ray: P = P0 + tV

Sphere: |P - O|2 - r 2 = 0

L = O - P0

tca = L • V

if (tca < 0) return 0

d2 = L • L - tca
2

if (d2 > r2) return 0

thc = sqrt(r2 - d2)

t = tca - thc and tca + thc

P0

V

O

P

r

P!

rdthc

tca

L

Geometric Method

P = P0 + tV

14

Ray-Sphere Intersection

P0

V

O

P
r

N = (P - O) / ||P - O||

N

• Need normal vector at intersection

for lighting calculations

15

Ray-Scene Intersection

• Intersections with geometric primitives
o Sphere

» Triangle
o Groups of primitives (scene)

• Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions

» Uniform grids

» Octrees

» BSP trees

16

Ray-Triangle Intersection

• First, intersect ray with plane

• Then, check if point is inside triangle

P

P0

V

17

Ray-Plane Intersection

Ray: P = P0 + tV

Plane: P • N + d = 0

Substituting for P, we get:

" (P0 + tV) • N + d = 0

Solution:

" t = -(P0 • N + d) / (V • N)

N

P

P0

V

Algebraic Method

P = P0 + tV

18

Ray-Triangle Intersection I

• Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle

" V1 = T1 - P0

" V2 = T2 - P0

" N1 = V2 x V1

" [opt.: Normalize N1]

" if ((P - P0) • N1 < 0)

" " return FALSE;

end

19

Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

P

P0

Compute “barycentric coordinates” ", #:

" " = Area(T1T2P) / Area(T1T2T3)

" # = Area(T1PT3) / Area(T1T2T3)

Q = (T2-T1) x (T3-T1)

Area(T1T2T3) = ||# Q|| sign(Q • N)

Check if point inside triangle:

" 0 $ " $ 1 and 0 $ # $ 1

" and " + # $ 1 V

"

#

T1

T2

T3

1%"%#

20

Other Ray-Primitive Intersections

• Cone, cylinder, ellipsoid:
o Similar to sphere

• Box
o Intersect 3 front-facing faces, return closest

• Convex polygon
o Same as triangle (check point-in-polygon algebraically)

• Concave polygon
o Same plane intersection
o More complex point-in-polygon test

21

Ray-Scene Intersection

• Find intersection with front-most primitive in group

A

B

C

D

E

F

Intersection FindIntersection(Ray ray, Scene scene)

{

 min_t = infinity

 min_primitive = NULL

 For each primitive in scene {

 t = Intersect(ray, primitive);

 if (t > 0 && t < min_t) then

 min_primitive = primitive

 min_t = t

 }

 }

 return Intersection(min_t, min_primitive)

}

22

Ray-Scene Intersection

• Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions

» Uniform grids

» Octrees

» BSP trees

23

Bounding Volumes

• Check for intersection with simple shape first

24

Bounding Volumes

• Check for intersection with simple shape first

25

Bounding Volumes

• Check for intersection with simple shape first
o If ray doesn!t intersect bounding volume,

then it doesn!t intersect its contents

26

Bounding Volumes

• Check for intersection with simple shape first
o If ray doesn!t intersect bounding volume,

then it doesn!t intersect its contents
o If found another hit closer than hit with bounding box,

then can skip checking contents of bounding box

27

Bounding Volumes

FindIntersection(Ray ray, Scene scene)

{

 // Find intersections with bounding volumes

 ...

 // Sort intersections front to back

 ...

 // Process intersections (checking for early termination)

 min_t = infinity;

 for each intersected bounding volume i {

 if (min_t < bv_t[i]) break;

 shape_t = FindIntersection(ray, bounding volume contents);

 if (shape_t < min_t) { min_t = shape_t;}

 }

 return min_t;

}

• Sort hits & detect early termination

28

Bounding Volume Hierarchies I

• Build hierarchy of bounding volumes
o Bounding volume of interior node contains all children

1

2 3

A

B

C

D

E

F

3

2

1

A B E FD

C

29

Bounding Volume Hierarchies

• Use hierarchy to accelerate ray intersections
o Intersect node contents only if hit bounding volume

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3

30

Bounding Volume Hierarchies III

FindIntersection(Ray ray, Node node)

{

 // Find intersections with child node bounding volumes

 ...

 // Sort intersections front to back

 ...

 // Process intersections (checking for early termination)

 min_t = infinity;

 for each intersected child i {

 if (min_t < bv_t[i]) break;

 shape_t = FindIntersection(ray, child);

 if (shape_t < min_t) { min_t = shape_t;}

 }

 return min_t;

}

• Traverse scene nodes recursively

31

Ray-Scene Intersection

• Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions

» Uniform grids

» Octrees

» BSP trees

32

Uniform Grid

• Construct uniform grid over scene
o Index primitives according to overlaps with grid cells

A

B

C

D

E

F

33

Uniform Grid

• Trace rays through grid cells
o Fast
o Incremental

A

B

C

D

E

F
Only check primitives

in intersected grid cells

34

Uniform Grid

• Potential problem:
o How choose suitable grid resolution?

A

B

C

D

E

F

Too little benefit

if grid is too coarse

Too much cost

if grid is too fine

35

Ray-Scene Intersection

• Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions

» Uniform grids

» Octrees

» BSP trees

36

Octree

• Construct adaptive grid over scene
o Recursively subdivide box-shaped cells into 8 octants
o Index primitives by overlaps with cells

A

B

C

D

E

F
Generally fewer cells

37

Octree

• Trace rays through neighbor cells
o Fewer cells
o More complex neighbor finding

A

B

C

D

E

F
Trade-off fewer cells for

more expensive traversal

38

Ray-Scene Intersection

• Intersections with geometric primitives
o Sphere
o Triangle
o Groups of primitives (scene)

» Acceleration techniques
o Bounding volume hierarchies
o Spatial partitions

» Uniform grids

» Octrees

» BSP trees

39

Binary Space Partition (BSP) Tree

• Recursively partition space by planes
o Every cell is a convex polyhedron

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

40

Binary Space Partition (BSP) Tree

• Simple recursive algorithms
o Example: point finding

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

P1

3

41

Binary Space Partition (BSP) Tree

• Trace rays by recursion on tree
o BSP construction enables simple front-to-back traversal

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

P1

2

4

3

42

Binary Space Partition (BSP) Tree

RayTreeIntersect(Ray ray, Node node, double min, double max)

{

 if (Node is a leaf)

 return intersection of closest primitive in cell, or NULL if none

 else

 dist = distance of the ray point to split plane of node

 near_child = child of node that contains the origin of Ray

 far_child = other child of node

 if the interval to look is on near side

 return RayTreeIntersect(ray, near_child, min, max)

 else if the interval to look is on far side

 return RayTreeIntersect(ray, far_child, min, max)

 else if the interval to look is on both side

 if (RayTreeIntersect(ray, near_child, min, dist)) return …;

 else return RayTreeIntersect(ray, far_child, dist, max)

}

43

Other Accelerations

• Screen space coherence
o Check last hit first
o Beam tracing
o Pencil tracing
o Cone tracing

• Memory coherence
o Large scenes

• Parallelism
o Ray casting is “embarassingly parallelizable”

• etc.

44

Acceleration

• Intersection acceleration techniques are important
o Bounding volume hierarchies
o Spatial partitions

• General concepts
o Sort objects spatially
o Make trivial rejections quick
o Utilize coherence when possible

Expected time is sub-linear in number of primitives

45

Summary

• Writing a simple ray casting renderer is easy
o Generate rays
o Intersection tests
o Lighting calculations

Image RayCast(Scene scene, int width, int height)
{
 Image image = new Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 Ray ray = ConstructRayThroughPixel(scene.camera, i, j);
 Intersection hit = FindIntersection(ray, scene);
 image[i][j] = GetColor(scene, ray, hit);
 }
 }
 return image;
}

46

Heckbert!s business card ray tracer

• typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec cen,color;
double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,
.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8, 1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,
.8,1., 1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;{return A.x
*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z;
return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(vdot(A,A)),A,black);}struct sphere*intersect
(P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),
u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&
u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=
s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),
eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l ->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&
intersect(P,U)==l)color=vcomb(e ,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z
=U.z;e=1-eta eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-
sqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb
(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2-
yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black,vunit(U)),black),printf
("%.0f %.0f %.0f\n",U);}/*minray!*/

47

Next Time is Illumination!

Without Illumination With Illumination

48

