4 N\

3D Rendering 2!

+ The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

Rays
through
view plane

Simplest method
is ray casting

Eye position

e w N
Ray Casting
Adam Finkelstein & Tim Weyrich
Princeton University
COS 426, Spring 2008
J
1
e N
Ray Casting
+ For each sample ...
° Construct ray from eye position through view plane
° Find first surface intersected by ray through pixel
° Compute color sample based on surface radiance
> ° o o \-_)/
o o o o ~o—"0
J
e N
Ray Casting

+ Rather traditional implementation:

4 N\

Ray Casting 5

+ For each sample ...

° Construct ray from eye position through view plane

° Find first surface intersected by ray through pixel

° Compute color sample based on surface radiance
Rays

through
view plane

4 N\

E\)

Ray Casting

J

4

+ Simple implementation in C++:

Image RayCast(Scene scene, int width, int height)

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(scene.camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}

return image;

Ray Casting 3
+ Simple implementation:

Image RayCast(Scene scene, int width, int height)

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(scene.camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}
return image;

}

Constructing Ray Through a Pixel i
+ 2D Example

© = frustum half-angle
d = distance to view plane

right = towards X up

P1 =P, + d*towards — d*tan(®)*right
P2 =P, + d*towards + d*tan(®)*right

P =PIl +((i+0.5)/ width) * (P2 - P1)
V=(P-Py)/[[P-Pyll
Ray: P = P, +tV

Ray-Scene Intersection 193
+ Intersections with geometric primitives

° Sphere

° Triangle

° Groups of primitives (scene)

+ Acceleration techniques
° Bounding volume hierarchies
° Spatial partitions
» Uniform grids
» Octrees
» BSP trees

Constructing Ray Through a Pixel

frmaraat

Up direction

back

Ray Casting 3
+ Simple implementation:

Image RayCast(Scene scene, int width, int height)

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(scene.camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);

}
return image;
}
Ray-Sphere Intersection A
Ray: P =P, +tV

Sphere: IP-0OI2-r2=0

Ray-Sphere Intersection | w

Ray: P =P, +tV

Sphere: IP - OI2-r2=0 Algebraic Method

Substituting for P, we get:
IPy+tV-0I2-r2=0

Solve quadratic equation:
att+bt+c=0 v r——
where:
a=1 P,
b=2V-.(P,-0)
c=IP,-Cl2-r2=0
P=P,+tV

Ray-Sphere Intersection .

» Need normal vector at intersection
for lighting calculations

N=(P-0)/IIP-Oll

Ray-Triangle Intersection i‘
+ First, intersect ray with plane

+ Then, check if point is inside triangle

Ray-Sphere Intersection I i‘

Ray: P =P, +tV
Sphere: IP-0OI2-r2=0

Geometric Method

L=0-P,

ta=L-V
if (t., <O0) return O

d2=L-L-t,2
if (d2>r2) return O

P, ¢

t=t,-t,andt +t,
p=B,+tv *

Ray-Scene Intersection 4

+ Intersections with geometric primitives

» Triangle
° Groups of primitives (scene)

+ Acceleration techniques
° Bounding volume hierarchies
° Spatial partitions
» Uniform grids
» Octrees
» BSP trees

Ray-Plane Intersection i‘
Ray: P =P, +tV

Plane:P+N+d=0 Algebraic Method

Substituting for P, we get:
(Pp+tV):N+d=0

Solution:
=-(Py*N+d)/(V+N)
P=P,+tV

Ray-Triangle Intersection | i‘

+ Check if point is inside triangle algebraically
T3

For each side of triangle
V,=T,-P,
V,=T,- P
N, =V,xV,
[opt.: Normalize N]
if ((P-Pg)+N,;<0)
return FALSE;
end

Other Ray-Primitive Intersections i‘

+ Cone, cylinder, ellipsoid:
° Similar to sphere

+ Box
° Intersect 3 front-facing faces, return closest

« Convex polygon
° Same as triangle (check point-in-polygon algebraically)

+ Concave polygon
° Same plane intersection
° More complex point-in-polygon test

21

Ray-Scene Intersection 4

» Acceleration techniques
° Bounding volume hierarchies
° Spatial partitions
» Uniform grids
» Octrees
» BSP trees

23

Ray-Triangle Intersection Il i‘
+ Check if point is inside triangle parametrically

Compute “barycentric coordinates” a., f: T,
o =Area(T,T,P) / Area(T,T,T,)
B = Area(T,PT,) / Area(T,T,T;)

Q= (T2-T1) x (T3-T1)
Area(T,T,T,) =12 Qll sign(Q * N)
Check if point inside triangle: T

O<a=<1and O0<f=1

T2
and a+f=1
PO
Ray-Scene Intersection

+ Find intersection with front-most primitive in group

Intersection FindIntersection(Ray ray, Scene scene)

{

min_t = infinity

min_primitive = NULL @
For each primitive in scene {

t = Intersect(ray, primitive);
if (t> 0 && t <min_t) then

min_primitive = primitive
min_t=t
}
} ®

return Intersection(min_t, min_primitive)

22

Bounding Volumes g

+ Check for intersection with simple shape first

24

Bounding Volumes 4

+ Check for intersection with simple shape first

25

Bounding Volumes 4

+ Check for intersection with simple shape first
° If ray doesn’t intersect bounding volume,
then it doesn’t intersect its contents
° If found another hit closer than hit with bounding box,
then can skip checking contents of bounding box

27

Bounding Volume Hierarchies | i

+ Build hierarchy of bounding volumes
° Bounding volume of interior node contains all children

[T v VA | 1
@® (B~
N W4

® ©

N\

©

D@
O-@
@

[>-©

29

Bounding Volumes 4

+ Check for intersection with simple shape first
° If ray doesn’t intersect bounding volume,
then it doesn’t intersect its contents

26

Bounding Volumes 4

+ Sort hits & detect early termination

FindIntersection(Ray ray, Scene scene)
s

1
// Find intersections with bounding volumes

// Sort intersections front to back

// Process intersections (checking for early termination)

min_t = infinity;

for each intersected bounding volume i {
if (min_t <bv_t[i]) break;
shape_t = FindIntersection(ray, bounding volume contents);
if (shape_t <min_t) { min_t = shape t;}

¥

return min_t;

28

Bounding Volume Hierarchies i

frmaraat

+ Use hierarchy to accelerate ray intersections
° Intersect node contents only if hit bounding volume

30

Bounding Volume Hierarchies Il i‘ Ray-Scene Intersection Lo

+ Traverse scene nodes recursively

FindIntersection(Ray ray, Node node)
s

1
// Find intersections with child node bounding volumes

/I Sort intersections front to back

» Acceleration techniques

/I Process intersections (checking for early termination)

min_t = infinity; ° . "

for each intersected child i { Spatllal partltlf)ns
if (min_t <bv_t[i]) break; » Uniform grids
shape_t = FindIntersection(ray, child); » Octrees

if (shape_t <min_t) { min_t = shape t;} » BSP trees

return min_t;

}
Uniform Grid Uniform Grid
+ Construct uniform grid over scene + Trace rays through grid cells
° Index primitives according to overlaps with grid cells ° Fast
° Incremental
Uniform Grid Ray-Scene Intersection

+ Potential problem:
° How choose suitable grid resolution?

Too little benefit ;
if grid is too coarse D (F

» Acceleration techniques

1

° Spatial partitions

Too much cost
if grid is too fine

» Octrees
» BSP trees

NN

35 36

Octree

.

+ Construct adaptive grid over scene
° Recursively subdivide box-shaped cells into 8 octants
° Index primitives by overlaps with cells

Generally fewer cells

Ray-Scene Intersection 4

» Acceleration techniques

° Spatial partitions

» BSP trees

39

Binary Space Partition (BSP) Tree i‘

+ Simple recursive algorithms
° Example: point finding

P Sq @5‘*
YA R e
A

AN

@\
—

/
O

D/

4

Octree 2

+ Trace rays through neighbor cells
° Fewer cells
° More complex neighbor finding

Trade-off fewer cells for
more expensive traversal

Binary Space Partition (BSP) Tree i‘

+ Recursively partition space by planes
° Every cell is a convex polyhedron

@y®\® ®§

[N/
ddn R

40

Binary Space Partition (BSP) Tree i‘

+ Trace rays by recursion on tree
° BSP construction enables simple front-to-back traversal

42

-

~
Binary Space Partition (BSP) Tree

RayTreelntersect(Ray ray, Node node, double min, double max)

if (Node is a leaf)
return intersection of closest primitive in cell, or NULL if none
else
dist = distance of the ray point to split plane of node
near_child = child of node that contains the origin of Ray
far_child = other child of node
if the interval to look is on near side
return RayTreelntersect(ray, near_child, min, max)
else if the interval to look is on far side
return RayTreelntersect(ray, far_child, min, max)
else if the interval to look is on both side
if (RayTreelntersect(ray, near_child, min, dist)) return ...;
else return RayTreelntersect(ray, far_child, dist, max)

}
Y
(~
Acceleration

+ Intersection acceleration techniques are important
° Bounding volume hierarchies
° Spatial partitions

+ General concepts
° Sort objects spatially
° Make trivial rejections quick
° Utilize coherence when possible

Expected time is sub-linear in number of primitives

45

-

~
Heckbert’s business card ray trace

o),

+ typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec cen,color;
double rad,kd ks, kt,kl,ir}*s, *best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.8.,-5,1.,.5,.2,1.,
.7,30.,.051.21.8.-5,1,8,8,1.,.3,7,0.0.,1.2,3.-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,
.8,1,,1.5.0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A B;{return A.x
*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec AB;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z;
return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(vdot(A,A)),A,black);}struct sphere*intersect
(P,D)vec P,D;{best=0;tmin=1€30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),
u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&
u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere*s, ;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=
s->ir,d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),
eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=I ->kI*vdot(N,U=vunit(vcomb(-1.,P->cen))))>08&
intersect(P,U)==l)color=vcomb(e ,l->color,color);U=s->color;color.x*=U x;color.y*=U.y;color.z
=U.z,e=1-eta eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-
sqrt (e),N,black))):black,vcomb(s->kstrace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb
(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2-
yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black,vunit(U)),black), printf
("%.0f %.0f %.0f\n",U);}/*minray!*/

J

47

4 N
Other Accelerations :,
+ Screen space coherence
° Check last hit first
° Beam tracing S N R S 2 Wl =
i K o pio p|oNe o
° Pencil tracing PSR S I 5 I | O S
° Cone tracing Jo oo e ole e
+ Memory coherence FS I I I A I IO P S

° Large scenes

+ Parallelism
° Ray casting is “embarassingly parallelizable”

- etc.
J
44
()
Summary
+ Writing a simple ray casting renderer is easy
° Generate rays
° Intersection tests
° Lighting calculations
Image RayCast(Scene scene, int width, int height)
{
Image image = new Image(width, height);
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(scene.camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(scene, ray, hit);
} .
return image;
}
J
46

-
Next Time is lllumination!

E\h
Y

Without lllumination With lllumination

48

