

•

Ray Casting

- For each sample ...
 - ° Construct ray from eye position through view plane
 - $^\circ\,$ Find first surface intersected by ray through pixel
 - $^{\circ}\,$ Compute color sample based on surface radiance

^	0	0	0	•	•	•	•	•	•
•	•	٠	•	•	•	•	•	•	
•	•	٠	•	•	۰	•	۰	•	•
•	٠	•	•	0	0	0	٥	•	•
•	-0-	0	٥	٥	٥	۰	٥	•	•
•	•	0	۰	•	۰	0	•	\	-

Other Ray-Primitive Intersections					
 Cone, cylinder, ellipsoid: ° Similar to sphere 					
Box ° Intersect 3 front-facing faces, return closest					
Convex polygon Same as triangle (check point-in-polygon algebraically)					
 Concave polygon Same plane intersection More complex point-in-polygon test 					

,

Acceleration

45

- Intersection acceleration techniques are important
 - ° Bounding volume hierarchies
 - ° Spatial partitions
- · General concepts
 - ° Sort objects spatially
 - ° Make trivial rejections quick
 - ° Utilize coherence when possible

Expected time is sub-linear in number of primitives

Heckbert's business card ray trace: • typedef struct{double x,y,z}vec;vec U,black,amb={02,02,02};struct sphere{vec cen,color; double rad,kd,ks,kt,ki,tj*s,"best,sph[]={0,6,.5,1,1,1,.9,05,2,85,0,17,-1,8,.-5,1,.5,2,1, 7,3,0,.05,12,1,8,.-5,1,8,8,1,.3,7,0,0,12,3,-6,15,1,.8,1,7,0,0,0,6,15,3,-3,12, 8,1,1,5,0,0,0,.5,15,}yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A,B;(return Ax *B,x+A,y*B,y+A,z*B,z]yvec vcomb(a,A,B)double avec A,B;(B,x+=a*A,x;B,=*a*A,y;B,z+=a*A,z; return B;)vec vunit(A)vec A;(return vcomb(1,/sqrt(vdot(A,A)),A,black);)struct sphere*intersect (P,D)vec P,D;(best=0;tmin=1e30;s= sph+5;while(s--xsph)b=vdot(D,U=vcomb(-1,.P,s-cen)), u=b*b*vdot(U,U)+s->rad;*s-rad,u=u>07sqrt(u):1e31,u=b-u=1+27b+u:b+u,tmin=u==1e-7&& u=tmin?best=s,u: tmin:return best}/vec trace(level,P,D)vec P,D;(double d,eta,e;vec N,color; struct sphere*s, 'tif(level-)-return black;(fs=intersect(PD));else return amb;color=amb;eta= s->ir;d=-vdot(D,N=vunit(vcomb(-1,.P=vcomb(tmin,D,P),s-cen)));if(d<0)N=vcomb(-1,.P,l>cen))))=0&& intersect(P,U)==1)color=vcomb(e, l->color;color);U=s-color;color;*=U,;color;y=U,;color;z *u_z;e=1+ata* eta*(1-4*d);return vcomb(s=-kt,e=0?trace(evel,P,vcomb(eta,D,vcomb(eta*d,sqrt (e),Nblack));)back,vcomb(s=-kt,e=0?trace(evel,P,vcomb(eta,D,vcomb(eta*d,sqrt (e),Nblack)));black,vcomb(s=-kt,race(I+V,ND));vcomb(eta*A,D,D));vcomb(eta*d,ND));vcomb(eta*A,D,D);vcomb(eta*d,sqrt (e),Nblack)));)main(){printf(*%d %dn*3,232);while(yx<32*32) U,x=yx%32:32/2,U,z=32/2; yx+r/32,U,=32/2/lan(25/114.5915590261),U=vcomb(255, trace(3,black,vunit(U)),black),printf (*%.0f %.0f %.0fn*,U);}

