

3D Modeling

Adam Finkelstein & Tim Weyrich Princeton University COS 426, Spring 2008

Announcement - talks of interest

- David Stork: "When Computers Look at Art: Computer Vision and Image Analysis in Humanistic Studies of the Visual Arts" Tuesday, February 19, 4:30pm 185 Nassau Street, James Stewart Theater
- Ian Buck *99, nVidia
 Compute Unified Device Architecture (CUDA)
 Friday, February 22, noon (lunch provided)
 Computer Science Dept, room 302

2

6

Why Different Representations?

- · Efficiency for different tasks
- o Acquisition
- o Rendering
- o Manipulation
- o Animation
- o Analysis

Data structures determine algorithms

Modeling Operations

- · What can we do with a 3D object representation?
 - o Edit
 - o Transform
 - o Smooth
 - o Render
 - o Animate
 - o Morph
 - o Compress
 - o Transmit
 - o Analyze o etc.

3D Object Representations

- · Desirable properties depend on intended use
 - o Easy to acquire
 - o Accurate
 - o Concise
 - o Intuitive editing
 - o Efficient editing
 - o Efficient display
 - o Efficient intersections o Guaranteed validity
 - o Guaranteed smoothness
 - o etc.

Outline

- Points
 - o Range image
 - o Point cloud
- Surfaces o Polygonal mesh
 - o Subdivision
 - o Parametric
 - o Implicit

- · Solids
 - o Voxels
 - o BSP tree
 - o CSG
 - o Sweep
- High-level structures
 - o Scene graph
 - o Application specific

Range Image

· Set of 3D points mapping to pixels of depth image o Acquired from range scanner

Range Image

Tesselation

Range Surface

Point Cloud

- · Unstructured set of 3D point samples o Acquired from range finder, computer vision, etc

Outline

- · Points
- o Range image
 - o Point cloud
- Surfaces
 - o Polygonal mesh
 - o Subdivision
 - o Parametric
 - o Implicit

- Solids
 - o Voxels
 - o BSP tree
 - o CSG
 - o Sweep
- High-level structures
 - o Scene graph
 - o Application specific

Polygonal Mesh

Connected set of polygons (usually triangles)

Stanford Graphics Laboratory

Subdivision Surface

· Coarse mesh & subdivision rule o Define smooth surface as limit of sequence of refinements

Zorin & Schroeder SIGGRAPH 99

Parametric Surface

- · Tensor product spline patchs
 - o Each patch is parametric function
 - o Careful constraints to maintain continuity

Implicit Surface

• Points satisfying: F(x,y,z) = 0

Implicit Model

Bill Lorensen SIGGRAPH 99 Course #4 Notes

Outline

- Points
 - o Range image
 - o Point cloud
- Surfaces o Polygonal mesh

 - o Implicit

- · Solids
 - o Voxels
 - o BSP tree
 - o CSG
 - o Sweep
- High-level structures
 - o Scene graph
 - o Application specific

31

Equivalence of Representations

- · Thesis:
 - Each fundamental representation has sufficient expressive power to model the shape of any geometric object.
 - o It is possible to perform all geometric operations with any fundamental representation!
- · Analogous to Turing-Equivalence:
 - o All computers today are turing-equivalent, but we still have many different processors

Computational Differences

- · Efficiency
 - o Combinatorial complexity (e.g. O(n log n))
 - o Space/time trade-offs (e.g. z-buffer)
 - o Numerical accuracy/stability (degree of polynomial)
- · Simplicity
 - o Ease of acquisition
 - o Hardware acceleration
 - o Software creation and maintenance
- Usability
 - o Designer interface vs. computational engine

33

Upcoming Lectures

- Points
 - o Range image
 - o Point cloud
- 0.....
- Surfaces
 - o Polygonal mesh
 - o Subdivision
 - o Parametric
 - o Implicit

- Solids
 - o Voxels
 - o BSP tree
 - o CSG
 - o Sweep
- · High-level structures
 - o Scene graph
 - o Application specific