

Announcement - talks of interest

- David Stork: "When Computers Look at Art: Computer Vision and Image Analysis in Humanistic Studies of the Visual Arts" Tuesday, February 19, 4:30pm 185 Nassau Street, James Stewart Theater
- Ian Buck *99, nVidia Compute Unified Device Architecture (CUDA) Friday, February 22, noon (lunch provided) Computer Science Dept, room 302


## What is 3D Modeling?

- Topics in computer graphics
o Imaging = representing $2 D$ images
- Rendering = constructing $2 D$ images from $3 D$ models
- Modeling $=$ representing $3 D$ objects
- Animation = simulating changes over time



## 3D Object Representations




3D Object Representations


Stanford Graphics Laboratory
How about this one?


9
3D Object Representations


This one?

## 3D Object Representations

## Equivalence of Representations

- Thesis:
o Each representation has enough expressive power to model the shape of any geometric object
o It is possible to perform all geometric operations with any fundamental representation
- Analogous to Turing-equivalence
o Computers and programming languages are Turing-equivalent, but each has its benefits...


## Why Different Representations?

- Efficiency for different tasks
o Acquisition
o Rendering
o Manipulation
o Animation
o Analysis

Data structures determine algorithms

## 3D Object Representations

- Desirable properties depend on intended use
o Easy to acquire
o Accurate
o Concise
o Intuitive editing
o Efficient editing
o Efficient display
o Efficient intersections
- Guaranteed validity

o Guaranteed smoothness
$o$ etc.


## Outline

- Points
o Range image
o Point cloud
- Surfaces
o Polygonal mesh
o Subdivision
- High-level structures
o Parametric
o Scene graph
o Application specific


## Range Image

- Set of 3D points mapping to pixels of depth image o Acquired from range scanner

anford


Range Image


Range Surface

## Point Cloud

- Unstructured set of 3D point samples
o Acquired from range finder, computer vision, etc



| Outline |  |
| :---: | :---: |
| Points <br> - Range image <br> o Point cloud <br> - Surfaces <br> o Polygonal mesh <br> o Subdivision <br> o Parametric <br> o Implicit | - Solids <br> o Voxels <br> o BSP tree <br> o CSG <br> o Sweep <br> - High-level structures <br> o Scene graph <br> o Application specific |

## Subdivision Surface

- Coarse mesh \& subdivision rule
o Define smooth surface as limit of sequence of refinements


Zorin \& Schroeder
SIGGRAPH
SIGGRAPH 99
Course Notes

## Implicit Surface

- Points satisfying: $F(x, y, z)=0$


Polygonal Model


Implicit Model

## Polygonal Mesh

- Connected set of polygons (usually triangles)




## Outline




25

## CSG

- Hierarchy of boolean set operations (union, difference, intersect) applied to simple shapes


FvDFH Figure 12.27


H\&B Figure 9.9

## BSP Tree

- Binary space partition with solid cells labeled o Constructed from polygonal representations



Naylor

## Sweep

- Solid swept by curve along trajectory


Removal Path


Sweep Model

| Outline | 会 |
| :---: | :---: |
| - Points <br> o Range image <br> o Point cloud <br> - Surfaces <br> o Polygonal mesh <br> o Subdivision <br> o Parametric <br> o Implicit | - Solids <br> o Voxels BSP tree CSG Sweep <br> - High-level structures <br> o Scene graph <br> o Application specific |

## Scene Graph

- Union of objects at leaf nodes




## Equivalence of Representations

- Thesis:
o Each fundamental representation has sufficient expressive power to model the shape of any geometric object.
o It is possible to perform all geometric operations with any fundamental representation!
- Analogous to Turing-Equivalence:
o All computers today are turing-equivalent, but we still have many different processors

Taxonomy of 3D Representations


## Computational Differences

- Efficiency
o Combinatorial complexity (e.g. O(n logn) )
o Space/time trade-offs (e.g. z-buffer)
o Numerical accuracy/stability (degree of polynomial)
- Simplicity
o Ease of acquisition
o Hardware acceleration
o Software creation and maintenance
- Usability
o Designer interface vs. computational engine


## Upcoming Lectures

- Points
- Range image
o Point cloud
- Surfaces
o Polygonal mesh
o Subdivision
o Parametric
o Implicit
- Solids
o Voxels
o BSP tree
- CSG
o Sweep
- High-level structures
o Scene graph
o Application specific

