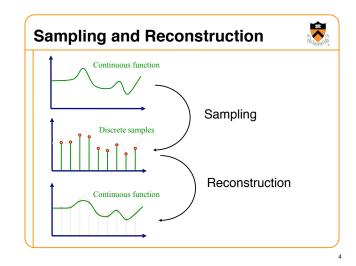


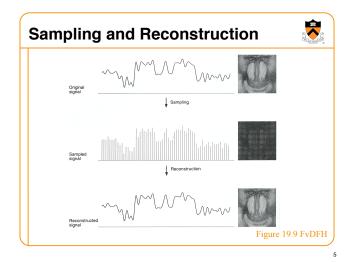
Sampling and Reconstruction

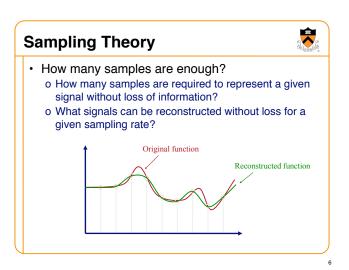
Continuous function

Sampling

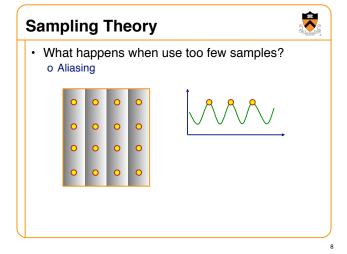
Sampling

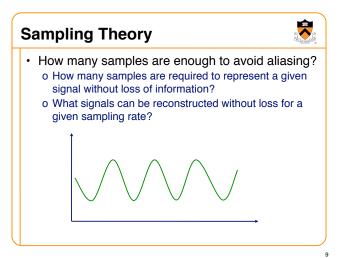


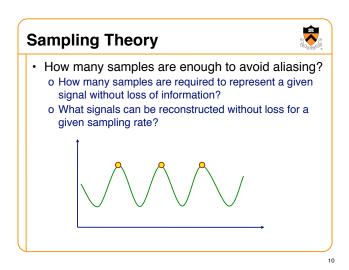


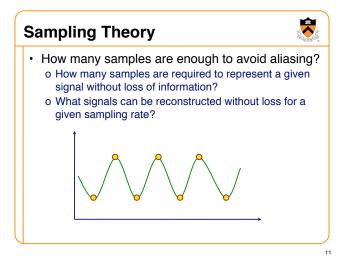


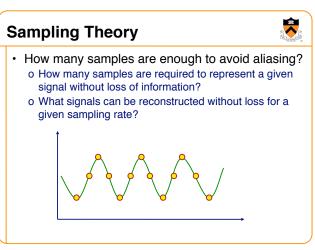
Sampling Theory What happens when use too few samples? o Aliasing Figure 14.17 FvDFH





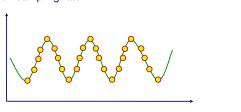






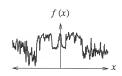
Sampling Theory

- · How many samples are enough to avoid aliasing?
- o How many samples are required to represent a given signal without loss of information?
- o What signals can be reconstructed without loss for a given sampling rate?



Spectral Analysis

- Spatial domain:
 - o Function: f(x)
 - o Filtering: convolution



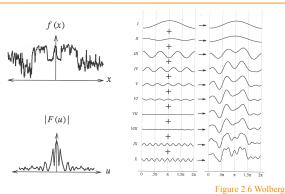
- · Frequency domain:
 - o Function: F(u)
 - o Filtering: multiplication

Any signal can be written as a

sum of periodic functions.

13

Fourier Transform



15

Fourier Transform

· Fourier transform:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi xu} dx$$

· Inverse Fourier transform:

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{+i2\pi ux}du$$

16

Sampling Theorem

- A signal can be reconstructed from its samples, if the original signal has no frequencies above 1/2 the sampling frequency - Shannon
- The minimum sampling rate for bandlimited function is called "Nyquist rate"

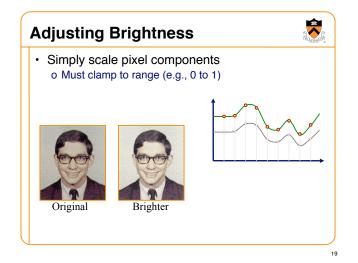
A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth.

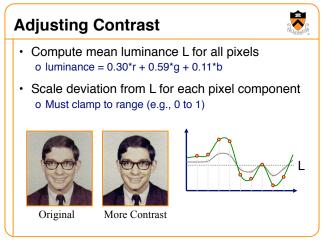
Image Processing

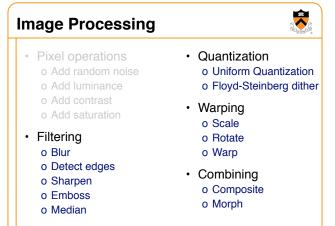
- · Pixel operations
 - o Add random noise
 - o Add luminance
 - o Add contrast
 - o Add saturation
- Filtering
 - o Blur
 - o Detect edges
 - o Sharpen
 - o Emboss
 - o Median

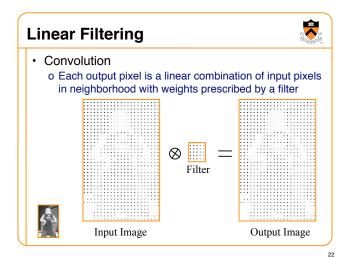
- Quantization
 - o Uniform Quantization
 - o Floyd-Steinberg dither
- Warping
 - o Scale
 - o Rotate
 - o Warp
- Combining
 - o Composite
 - o Morph

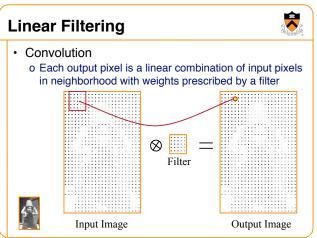
17

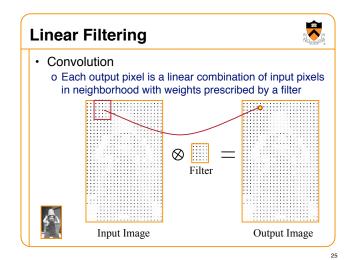


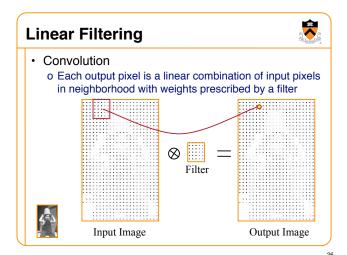










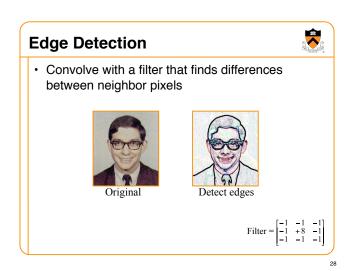


Adjust Blurriness

• Convolve with a filter whose entries sum to one o Each pixel becomes a weighted average of its neighbors

Original

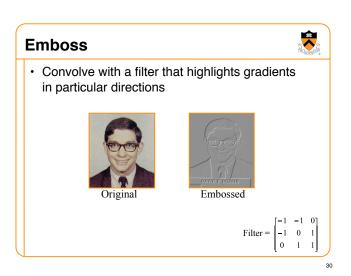
Filter = $\begin{bmatrix} \frac{1}{16} & \frac{2}{16} & \frac{1}{16} \\ \frac{2}{16} & \frac{4}{16} & \frac{2}{16} \\ \frac{1}{16} & \frac{2}{16} & \frac{1}{16} \end{bmatrix}$



Sharpen

• Sum detected edges with original image

Filter = $\begin{bmatrix} -1 & -1 & -1 \\ -1 & +9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$



Non-Linear Filtering

 Each output pixel is a non-linear function of input pixels in neighborhood (filter depends on input)

Original

Oil

Stain Glas

Image Processing

- Pixel operations
 - o Add random noise
 - o Add luminance
 - o Add contrast
 - o Add saturation
- Filtering
 - o Blur
 - o Detect edges
 - o Sharp
 - o Emboss
 - o Media

- · Quantization
 - o Uniform Quantization
 - o Floyd-Steinberg dither
- · Warping
 - o Scale
 - o Rotate
 - o Warp
- Combining
 - o Composite
 - o Morph

• Reduce intensity resolution • Frame buffers have limited number of bits per pixel • Physical devices have limited dynamic range

Uniform Quantization P(x, y) = round(I(x, y))where round() chooses nearest value that can be represented. I(x,y) P(x,y) (2 bits per pixel)

00

Uniform Quantization

· Images with decreasing bits per pixel:

2 h

1 bit

Notice contouring.

Reducing Effects of Quantization

- Dithering
 - o Random dither
 - o Ordered dither
 - o Error diffusion dither
- Halftoning
 - o Classical halftoning

Dithering

- · Distribute errors among pixels
 - o Exploit spatial integration in our eye
 - o Display greater range of perceptible intensities

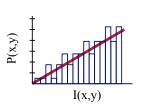
Original (8 bits)

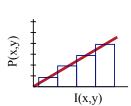
Uniform Quantization (1 bit)

Floyd-Steinberg Dither (1 bit)

Random Dither

· Randomize quantization errors o Errors appear as noise





$$P(x, y) = round(I(x, y) + noise(x,y))$$

Random Dither

Original (8 bits)

Uniform Quantization (1 bit)

Random Dither (1 bit)

Ordered Dither

- · Pseudo-random quantization errors o Matrix stores pattern of threshholds

 $i = x \mod n$ $j = y \mod n$

 $D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$

e = I(x,y) - trunc(I(x,y))threshold = $(D(i,j)+1)/(n^2+1)$ if (e > threshold)

P(x,y) = ceil(I(x, y))

else P(x,y) = floor(I(x,y))

Ordered Dither

· Bayer's ordered dither matrices

$$D_{n} = \begin{bmatrix} 4D_{n/2} + D_{2}(1,1)U_{n/2} & 4D_{n/2} + D_{2}(1,2)U_{n/2} \\ 4D_{n/2} + D_{2}(2,1)U_{n/2} & 4D_{n/2} + D_{2}(2,2)U_{n/2} \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_4 = \begin{bmatrix} 15 & 7 & 13 & 5 \\ 3 & 11 & 1 & 9 \\ 12 & 4 & 14 & 6 \\ 0 & 8 & 2 & 10 \end{bmatrix}$$

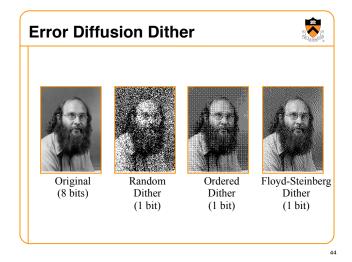
Ordered Dither

Original (8 bits)

Random Dither (1 bit)

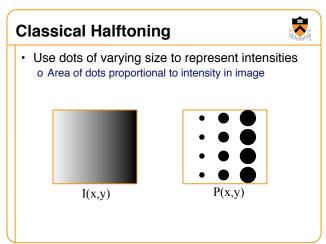
Ordered Dither (1 bit)

Error Diffusion Dither • Spread quantization error over neighbor pixels o Error dispersed to pixels right and below $\frac{\alpha}{\frac{3}{16}} = \frac{\alpha}{\frac{7}{16}}$ $\alpha + \beta + \gamma + \delta = 1.0$ Figure 14.42 from H&B

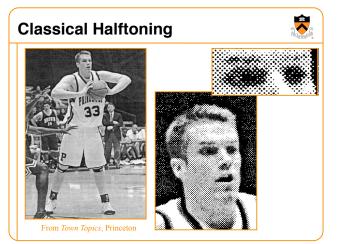


Reducing Effects of Quantization

- · Dithering
 - o Random dither
 - o Ordered dither
 - o Error diffusion dither
- ➤ Halftoning
 - o Classical halftoning



46



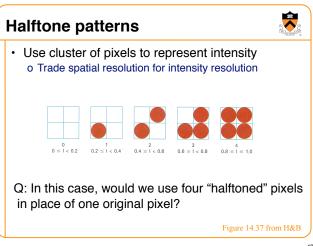


Image Processing

- Pixel operations
- o Add random noise
- o Add luminance
- o Add contrast
- o Add saturation
- Filtering

- Quantization

 - o Floyd-Steinberg dither
- Warping
 - o Scale
 - o Rotate
 - o Warp
- · Combining
 - o Composite
 - o Morph

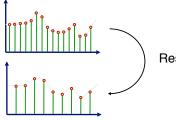
Image Processing

· Consider reducing the image resolution

Original image

Image Processing

· Image processing is a resampling problem

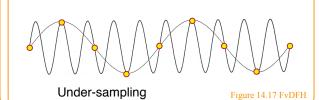


Resampling

Sampling Theorem

· A signal can be reconstructed from its samples, if the original signal has no frequencies above 1/2 the sampling frequency - Shannon

Aliasing will occur if the signal is under-sampled



Aliasing

- · In general:
 - o Artifacts due to under-sampling or poor reconstruction
- · Specifically, in graphics:
 - o Spatial aliasing
 - o Temporal aliasing

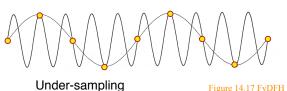
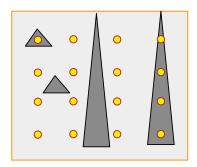
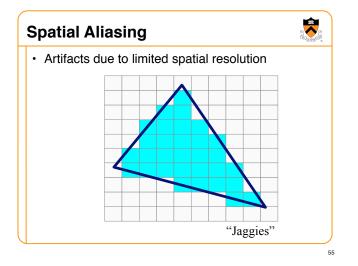


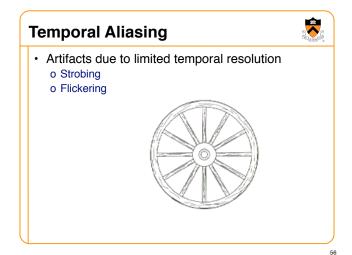
Figure 14.17 FvDFH

Spatial Aliasing

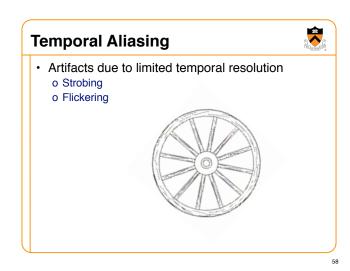
· Artifacts due to limited spatial resolution

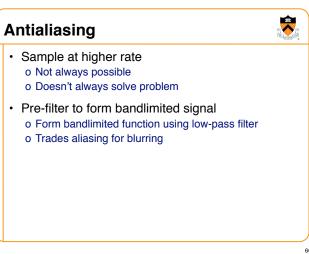


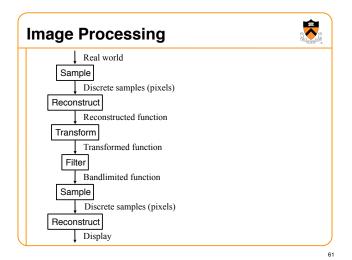


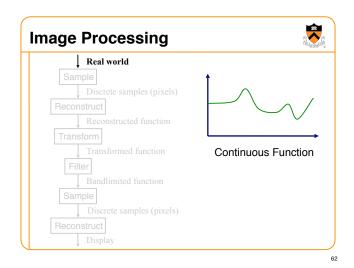


Temporal Aliasing · Artifacts due to limited temporal resolution o Strobing o Flickering



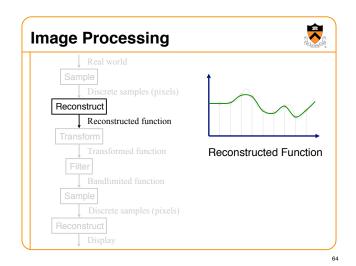




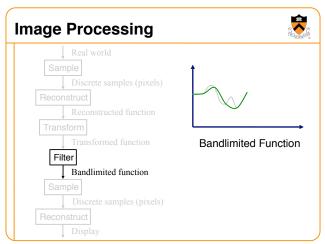


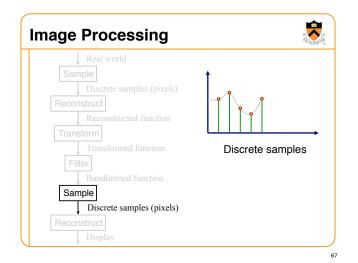
Real world
Sample
Discrete samples (pixels)
Reconstruct
Reconstructed function
Transform
Transform
Transform
Discrete Samples

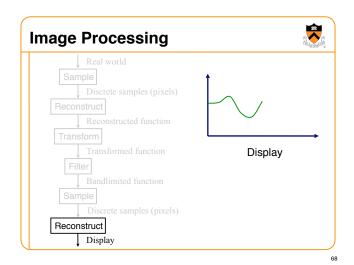
Bandlimited function
Sample
Discrete samples (pixels)
Reconstruct
Display



Real world
Sample
Discrete samples (pixels)
Reconstruct
Reconstructed function
Transform
Transform
Transformed function
Filter
Bandlimited function
Sample
Discrete samples (pixels)
Reconstruct
Display







• Frequency domain

• Spatial domain $Sinc(x) = \frac{\sin \pi x}{\pi x}$ Figure 4.5 Wolberg

Practical Image Processing · Finite low-pass filters Real world o Point sampling (bad) Sample o Triangle filter Discrete samples (pixels) o Gaussian filter Reconstruct Convolution Reconstructed function Transform Transformed function Filter Bandlimited function Sample Discrete samples (pixels) Reconstruct Display

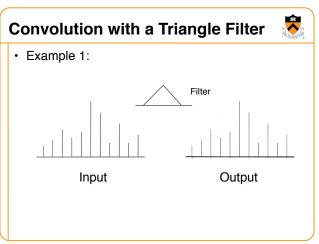
Convolution

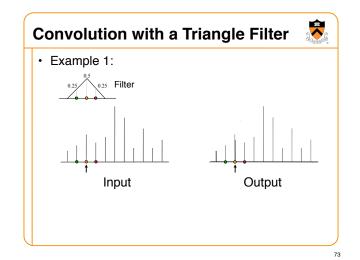
• Spatial domain: output pixel is weighted sum of pixels in neighborhood of input image o Pattern of weights is the "filter"

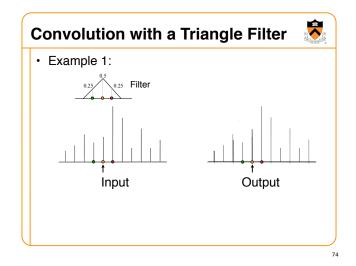
Filter

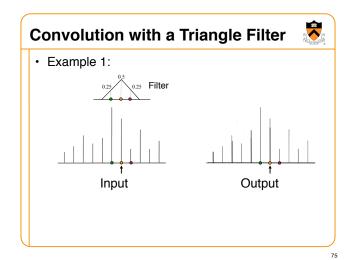
Input

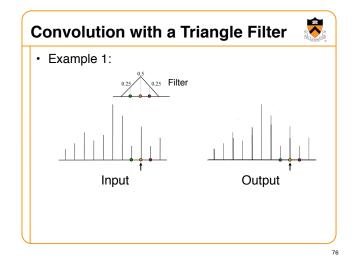
Output

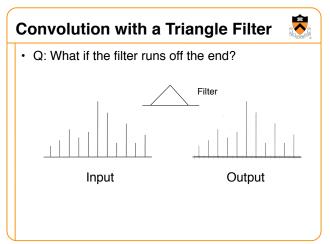


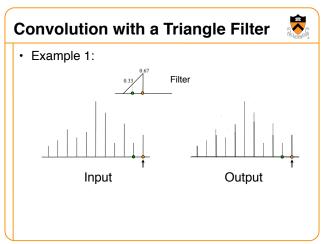


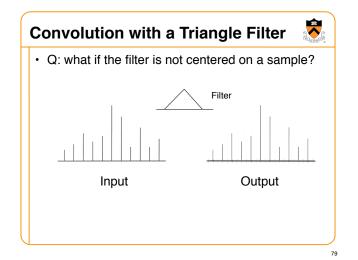


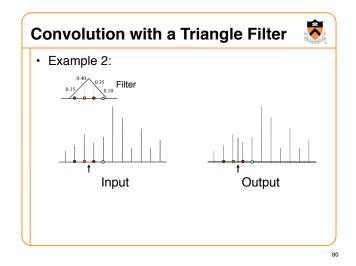


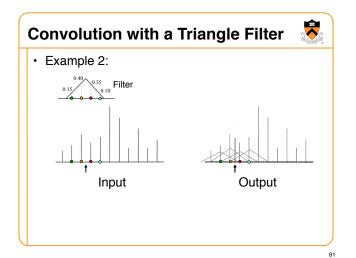


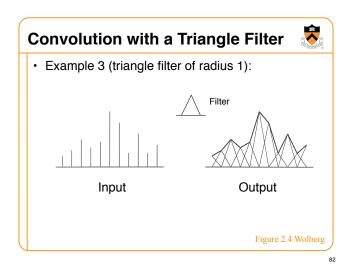


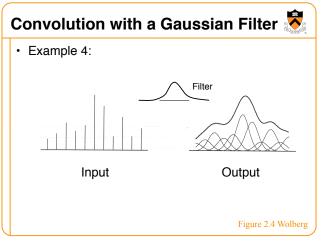


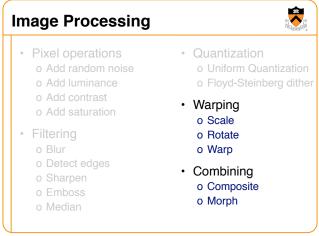












Scaling

· Resample with triangle or Gaussian filter

More on this next lecture!

1/4X resolution

4X resolution

Summary

- · Image filtering
 - o Compute new values for image pixels based on function of old values
- · Halftoning and dithering
 - o Reduce visual artifacts due to quantization
 - o Distribute errors among pixels
 - » Exploit spatial integration in our eye
- · Sampling and reconstruction
 - o Reduce visual artifacts due to aliasing
 - o Filter to avoid undersampling
 - » Blurring is better than aliasing