Interacting with Data

David M. Blei

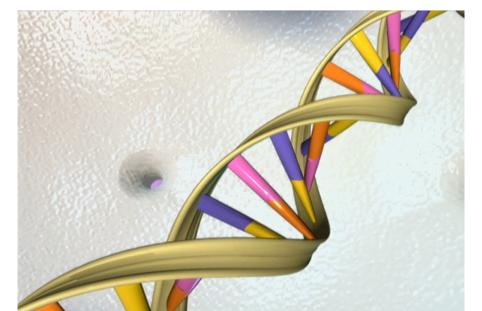
COS424 Princeton University

February 12, 2008

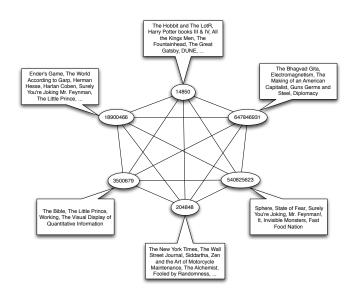
Data are everywhere.


User ratings

<u>Ikiru</u> (1952)	UR	Foreign	0分分分分 公
<u>Junebug</u> (2005)	R	Independent	0分分分分 公
La Cage aux Folles (1979)	R	Comedy	0分分分分 公
The Life Aquatic with Steve Zissou (2004)	R	Comedy	0444 4
Lock, Stock and Two Smoking Barrels (1998)	R	Action & Adventure	0444 4
Lost in Translation (2003)	R	Drama	0444 4
Love and Death (1975)	PG	Comedy	0444 4
The Manchurian Candidate (1962)	PG-13	Classics	0444 4
<u>Memento</u> (2000)	R	Thrillers	0分分分分 公
Midnight Cowboy (1969)	R	Classics	0分分分分 公


Purchase histories

	Cheese			
0.5/0.51 lb	Cabot Vermont Cheddar	0.51 lb	\$7.99/lb	\$4.07
	Dairy			
1/1	Friendship Lowfat Cottage Cheese (160z)		\$2.89/ea	\$2.89
1/1	Nature's Yoke Grade A Jumbo Brown Eggs (1 dozen)	\$1.49		
1/1	Santa Barbara Hot Salsa, Fresh (16oz) \$2.69/ea		\$2.69	
1/1	Stonyfield Farm Organic Lowfat Plain Yogurt (32oz) \$3.59/ea			\$3.59
	Fruit			
3/3	Anjou Pears (Farm Fresh, Med)	1.76 lb	\$2.49/lb	\$4.38
2/2	Cantaloupe (Farm Fresh, Med)		\$2.00/ea	\$4.00 S
	Grocery			
1/1	Fantastic World Foods Organic Whole Wheat Couscous (12oz) \$1.99/ea		\$1.99	
1/1	Garden of Eatin' Blue Corn Chips (9oz) \$2.49/ea		\$2.49	
1/1	Goya Low Sodium Chickpeas (15.5oz) \$0.89/ea		\$0.89	
2/2	Marcal 2-Ply Paper Towels, 90ct (1ea) \$1.09/ea		\$1.09/ea	\$2.18 T
1/1	Muir Glen Organic Tomato Paste (6oz)		\$0.99/ea	\$0.99
1/1	Starkist Solid White Albacore Tuna in Spring Water (6oz) \$1.89/ea		\$1.89/ea	\$1.89


Document collections

Genomics

Social networks

Data are useful.

Will NetFlix user 493234 like Transformers?

Will NetFlix user 493234 like Transformers?

Group these images into 3 groups

Group these images into 2 groups ... into 3 groups

Rank these images...

- ...according to relevance to instrument.
- ...according to relevance to machine

Is this spam?

Subject: CHARITY.

Date: February 4, 2008 10:22:25 AM EST

To: undisclosed-recipients:; Reply-To: s.polla@yahoo.fr

Dear Beloved,

My name is Mrs. Susan Polla, from ITALY. If you are a christian and interested in charity please reply me at : (s.polla@yahoo.fr) for insight.

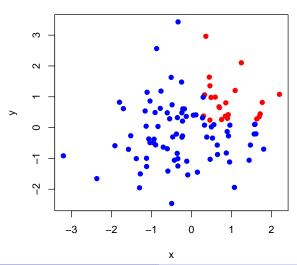
Respectfully,

Mrs Susan Polla.

How about this one?

From: [snipped]

Subject: Superbowl?

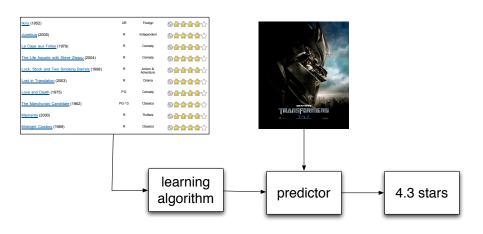

Date: January 30, 2008 8:09:00 PM EST

To: blei@cs.princeton.edu, [snipped]

Anyone interested in coming by to watch the game? Beer and pizza, I'd imagine. If anyone wants, we could get together earlier, play a board

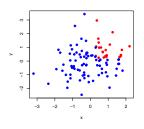
game or cards or roll up characters or something. Takers?

Label a new point



Data contain patterns.

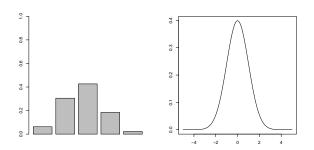
COS424


- Studying algorithms that find and exploit the patterns in data
- These algorithms draw on ideas from
 - · machine learning,
 - artificial intelligence
 - applied statistics
 - optimization
 - probability theory
- Applications include
 - natural science (e.g., genomics)
 - web technology (e.g., Google, NetFlix)
 - finance (e.g., stock prediction)
 - · and many others

Basic idea behind everything we will study

- Take some data
- 2 Analyze it
- 3 Use it to do something

Supervised vs. unsupervised methods

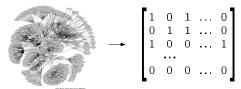

- Supervised methods find patterns in fully observed data and then try to predict something from partially observed data.
- For example, we might observe a collection of emails that are categorized into spam and not spam.
- After learning something about them, we want to take new email and automatically categorize it.

Supervised vs. unsupervised methods

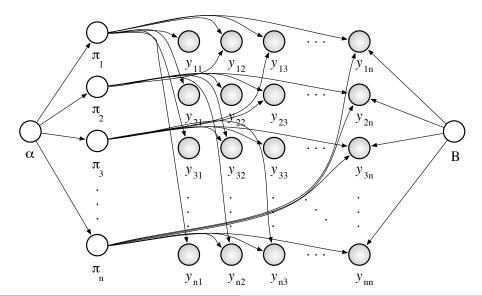
- Unsupervised methods find hidden structure in data, structure that we can never formally observe.
- E.g., a museum has images of their collection that they want grouped by similarity into 15 groups.
- Unsupervised learning is more difficult to evaluate than supervised learning. But, these kinds of methods are widely used.

Discrete vs. continuous methods

- Discrete methods manipulate a finite set of objects
 - e.g., classification into one of 5 categories.
- Continuous methods manipulate continuous values
 - e.g., prediction of the change of a stock price.


One useful grouping

	discrete	continuous
supervised	classification	regression
unsupervised	clustering	dimensionality reduction


Data representation

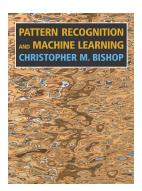
Republican nominee George Bush said he felt nervous as he voted today in his adopted home state of Texas, where he ended...

Probability models

Understanding assumptions

- The methods we'll study make assumptions about the data on which they are applied. E.g.,
 - Documents can be analyzed as a sequence of words;
 - or, as a "bag" of words.
 - Independent of each other;
 - or, as connected to each other
- What are the assumptions behind the methods?
- When/why are they appropriate?

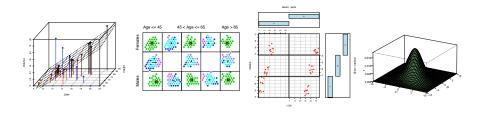
Computational efficiency



- What we can do with data depends on our computational constraints and on how much data we have.
- We need to understand these and tailor our methods to them.
 (This is connected to "understanding assumptions.")

Course requirements

- Attend and participate in lecture.
- Do the homework (about 65% of your grade).
- Write scribe notes.
- Prepare a final project (about 35% of your grade).


Course reading

- We will provide reading materials.
- These two books are excellent.
- (In the future, Bishop will likely be required for this course.)

Homeworks

- Written and programming exercises
- Programming will be in R
- R is a great, free, open-source statistical programming
- The TAs will provide a tutorial for R in the next couple of weeks.
- (Proficiency in R will help you throughout your professional life.)
- See the course web-page for details on "late days."

Final Project

- The final project is the centerpiece of the course.
- Focused effort on a applied data analysis project
- Please try to work in pairs or groups of three.
- Example final projects from last year:
 - Analyzing the NetFlix competition data
 - Developing a wavelet-based clustering algorithm
 - Exploring variational inference, a general-purpose algorithm for learning probabilistic models

Course staff

- David Blei
 204 CS Building
 blei@cs.princeton.edu
 659-258-9907
 Office hours: by appointment
- Indraneel Mukherjee
 103C CS Building
 imukherj@cs.princeton.edu
 Office hours: Monday 6:30PM-8:30PM; AI lab (4th floor)
- Martin Suchara
 103A CS Building
 msuchara@cs.princeton.edu
 Office hours: Wednesday 6:30PM-8:30PM; AI lab (4th floor)

Contacting us

- Don't hesitate to contact us to discuss the material or anything else related to the course.
- Preferred: Use the course mailing list
 - Usually answered within 1 day by me, Martin, or Indraneel
 - · Any kind of technical question
 - Many administrative questions
 - This way, everyone can benefit from the Q and A.
- If your query is more sensitive, then email the course staff separately. You will get a response within 2-3 days.
- If you need a response immediately, call me or stop by my office.

Tentative syllabus

- Probability and statistics review
- Classification (Naive Bayes, support vector machines, boosting)
- Clustering (K-means, agglomerative, mixture models)
- Sequential data (Hidden Markov models)
- Prediction (Linear regression, logistic regression, GLMs)
- Dimensionality reduction (PCA, Factor analysis)
- Continuous sequential data (Kalman filters)
- Advanced topics (Bayesian statistics, MCMC)
- Applications (Neuroscience, Vision, Information retrieval)