Some Probability and Statistics

David M. Blei
COS424
Princeton University

February 14, 2008

Who wants to scribe?

Random variable

- Probability is about random variables.
- A random variable is any "probabilistic" outcome.
- For example,
- The flip of a coin
- The height of someone chosen randomly from a population
- We'll see that it's sometimes useful to think of quantities that are not strictly probabilistic as random variables.
- The temperature on $11 / 12 / 2013$
- The temperature on $03 / 04 / 1905$
- The number of times "streetlight" appears in a document

Random variable

- Random variables take on values in a sample space.
- They can be discrete or continuous:
- Coin flip: $\{H, T\}$
- Height: positive real values $(0, \infty)$
- Temperature: real values $(-\infty, \infty)$
- Number of words in a document: Positive integers $\{1,2, \ldots\}$
- We call the values atoms.
- Denote the random variable with a capital letter; denote a realization of the random variable with a lower case letter.
- E.g., X is a coin flip, x is the value (H or T) of that coin flip.

Discrete distribution

- A discrete distribution assigns a probability to every atom in the sample space
- For example, if X is an (unfair) coin, then

$$
\begin{aligned}
& P(X=H)=0.7 \\
& P(X=T)=0.3
\end{aligned}
$$

- The probabilities over the entire space must sum to one

$$
\sum_{x} P(X=x)=1
$$

- Probabilities of disjunctions are sums over part of the space. E.g., the probability that a die is bigger than 3:

$$
P(D>3)=P(D=4)+P(D=5)+P(D=6)
$$

A useful picture

- An atom is a point in the box
- An event is a subset of atoms (e.g., $d>3$)
- The probability of an event is sum of probabilities of its atoms.

Joint distribution

- Typically, we consider collections of random variables.
- The joint distribution is a distribution over the configuration of all the random variables in the ensemble.
- For example, imagine flipping 4 coins. The joint distribution is over the space of all possible outcomes of the four coins.

$$
\begin{aligned}
P(H H H H) & =0.0625 \\
P(H H H T) & =0.0625 \\
P(H H T H) & =0.0625
\end{aligned}
$$

- You can think of it as a single random variable with 16 values.

Visualizing a joint distribution

$\sim X$

Conditional distribution

- A conditional distribution is the distribution of a random variable given some evidence.
- $P(X=x \mid Y=y)$ is the probability that $X=x$ when $Y=y$.
- For example,

$$
\begin{aligned}
P(\text { I listen to Steely Dan }) & =0.5 \\
P(\text { I listen to Steely Dan } \mid \text { Toni is home }) & =0.1 \\
P(\text { I listen to Steely Dan } \mid \text { Toni is not home }) & =0.7
\end{aligned}
$$

- $P(X=x \mid Y=y)$ is a different distribution for each value of y

$$
\begin{aligned}
& \sum_{x} P(X=x \mid Y=y)=1 \\
& \sum_{y} P(X=x \mid Y=y) \neq 1 \quad \text { (necessarily) }
\end{aligned}
$$

Definition of conditional probability

- Conditional probability is defined as:

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

which holds when $P(Y)>0$.

- In the Venn diagram, this is the relative probability of $X=x$ in the space where $Y=y$.

The chain rule

- The definition of conditional probability lets us derive the chain rule, which let's us define the joint distribution as a product of conditionals:

$$
\begin{aligned}
P(X, Y) & =P(X, Y) \frac{P(Y)}{P(Y)} \\
& =P(X \mid Y) P(Y)
\end{aligned}
$$

- For example, let Y be a disease and X be a symptom. We may know $P(X \mid Y)$ and $P(Y)$ from data. Use the chain rule to obtain the probability of having the disease and the symptom.
- In general, for any set of N variables

$$
P\left(X_{1}, \ldots, X_{N}\right)=\prod_{n=1}^{N} P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

Marginalization

- Given a collection of random variables, we are often only interested in a subset of them.
- For example, compute $P(X)$ from a joint distribution $P(X, Y, Z)$
- Can do this with marginalization

$$
P(X)=\sum_{y} \sum_{z} P(X, y, z)
$$

- Derived from the chain rule:

$$
\begin{aligned}
\sum_{y} \sum_{z} P(X, y, z) & =\sum_{y} \sum_{z} P(X) P(y, z \mid X) \\
& =P(X) \sum_{y} \sum_{z} P(y, z \mid X) \\
& =P(X)
\end{aligned}
$$

Bayes rule

- From the chain rule and marginalization, we obtain Bayes rule.

$$
P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{\sum_{y} P(X \mid Y=y) P(Y=y)}
$$

- Again, let Y be a disease and X be a symptom. From $P(X \mid Y)$ and $P(Y)$, we can compute the (useful) quantity $P(Y \mid X)$.
- Bayes rule is important in Bayesian statistics, where Y is a parameter that controls the distribution of X.

Independence

- Random variables are independent if knowing about X tells us nothing about Y.

$$
P(Y \mid X)=P(Y)
$$

- This means that their joint distribution factorizes,

$$
X \Perp Y \Longleftrightarrow P(X, Y)=P(X) P(Y)
$$

- Why? The chain rule

$$
\begin{aligned}
P(X, Y) & =P(X) P(Y \mid X) \\
& =P(X) P(Y)
\end{aligned}
$$

Independence examples

- Examples of independent random variables:
- Flipping a coin once / flipping the same coin a second time
- You use an electric toothbrush / blue is your favorite color
- Examples of not independent random variables:
- Registered as a Republican / voted for Bush in the last election
- The color of the sky / The time of day

Are these independent?

- Two twenty-sided dice
- Rolling three dice and computing ($D_{1}+D_{2}, D_{2}+D_{3}$)
- \# enrolled students and the temperature outside today
- \# attending students and the temperature outside today

Two coins

- Suppose we have two coins, one biased and one fair,

$$
P\left(C_{1}=H\right)=0.5 \quad P\left(C_{2}=H\right)=0.7
$$

- We choose one of the coins at random $Z \in\{1,2\}$, flip C_{Z} twice, and record the outcome (X, Y).
- Question: Are X and Y independent?
- What if we knew which coin was flipped Z ?

Conditional independence

- X and Y are conditionally independent given Z.

$$
P(Y \mid X, Z=z)=P(Y \mid Z=z)
$$

for all possible values of z.

- Again, this implies a factorization

$$
X \Perp Y \mid Z \Longleftrightarrow P(X, Y \mid Z=z)=P(X \mid Z=z) P(Y \mid Z=z)
$$

for all possible values of z.

Continuous random variables

- We've only used discrete random variables so far (e.g., dice)
- Random variables can be continuous.
- We need a density $p(x)$, which integrates to one.
E.g., if $x \in \mathbb{R}$ then

$$
\int_{-\infty}^{\infty} p(x) d x=1
$$

- Probabilities are integrals over smaller intervals. E.g.,

$$
P(X \in(-2.4,6.5))=\int_{-2.4}^{6.5} p(x) d x
$$

- Notice when we use P, p, X, and x.

The Gaussian distribution

- The Gaussian (or Normal) is a continuous distribution.

$$
p(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

- The density of a point x is proportional to the negative exponentiated half distance to μ scaled by σ^{2}.
- μ is called the mean; σ^{2} is called the variance.

Gaussian density

- The mean μ controls the location of the bump.
- The variance σ^{2} controls the spread of the bump.

Notation

- For discrete RV's, p denotes the probability mass function, which is the same as the distribution on atoms.
- (I.e., we can use P and p interchangeably for atoms.)
- For continuous RV's, p is the density and they are not interchangeable.
- This is an unpleasant detail. Ask when you are confused.

Expectation

- Consider a function of a random variable, $f(X)$. (Notice: $f(X)$ is also a random variable.)
- The expectation is a weighted average of f, where the weighting is determined by $p(x)$,

$$
\mathrm{E}[f(X)]=\sum_{x} p(x) f(x)
$$

- In the continuous case, the expectation is an integral

$$
\mathrm{E}[f(X)]=\int p(x) f(x) d x
$$

Conditional expectation

- The conditional expectation is defined similarly

$$
\mathrm{E}[f(X) \mid Y=y]=\sum_{x} p(x \mid y) f(x)
$$

- Question: What is $\mathrm{E}[f(X) \mid Y=y]$? What is $\mathrm{E}[f(X) \mid Y]$?
- $\mathrm{E}[f(X) \mid Y=y]$ is a scalar.
- $\mathrm{E}[f(X) \mid Y]$ is a (function of a) random variable.

Iterated expectation

Let's take the expectation of $\mathrm{E}[f(X) \mid Y]$.

$$
\begin{aligned}
\mathrm{E}[\mathrm{E}[f(X)] \mid Y]] & =\sum_{y} p(y) \mathrm{E}[f(X) \mid Y=y] \\
& =\sum_{y} p(y) \sum_{x} p(x \mid y) f(x) \\
& =\sum_{y} \sum_{x} p(x, y) f(x) \\
& =\sum_{y} \sum_{x} p(x) p(y \mid x) f(x) \\
& =\sum_{x} p(x) f(x) \sum_{y} p(y \mid x) \\
& =\sum_{x} p(x) f(x) \\
& =\mathrm{E}[f(X)]
\end{aligned}
$$

Flips to the first heads

- We flip a coin with probability π of heads until we see a heads.
- What is the expected waiting time for a heads?

$$
\begin{aligned}
\mathrm{E}[N] & =1 \pi+2(1-\pi) \pi+3(1-\pi)^{2} \pi+\ldots \\
& =\sum_{n=1}^{\infty} n(1-\pi)^{(n-1)} \pi
\end{aligned}
$$

Let's use iterated expectation

$$
\begin{aligned}
\mathrm{E}[N] & =\mathrm{E}\left[\mathrm{E}\left[N \mid X_{1}\right]\right] \\
& =\pi \cdot \mathrm{E}\left[N \mid X_{1}=H\right]+(1-\pi) \mathrm{E}\left[N \mid X_{1}=T\right] \\
& =\pi \cdot 1+(1-\pi)(\mathrm{E}[N]+1)] \\
& =\pi+1-\pi+(1-\pi) \mathrm{E}[N] \\
& =1 / \pi
\end{aligned}
$$

Probability models

- Probability distributions are used as models of data that we observe.
- Pretend that data is drawn from an unknown distribution.
- Infer the properties of that distribution from the data
- For example
- the bias of a coin
- the average height of a student
- the chance that someone will vote for H . Clinton
- the chance that someone from Vermont will vote for H. Clinton
- the proportion of gold in a mountain
- the number of bacteria in our body
- the evolutionary rate at which genes mutate
- We will see many models in this class.

Independent and identically distributed random variables

- Independent and identically distributed (IID) variables are:
(1) Independent
(2) Identically distributed
- If we repeatedly flip the same coin N times and record the outcome, then X_{1}, \ldots, X_{N} are IID.
- The IID assumption can be useful in data analysis.

What is a parameter?

- Parameters are values that index a distribution.
- A coin flip is a Bernoulli. Its parameter is the probability of heads.

$$
p(x \mid \pi)=\pi^{1[x=H]}(1-\pi)^{1[x=T]}
$$

where $1[\cdot]$ is called an indicator function. It is 1 when its argument is true and 0 otherwise.

- Changing π leads to different Bernoulli distributions.
- A Gaussian has two parameters, the mean and variance.

$$
p(x \mid \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

The likelihood function

- Again, suppose we flip a coin N times and record the outcomes.
- Further suppose that we think that the probability of heads is π. (This is distinct from whatever the probability of heads "really" is.)
- Given π, the probability of an observed sequence is

$$
p\left(x_{1}, \ldots, x_{N} \mid \pi\right)=\prod_{n=1}^{N} \pi^{1\left[x_{n}=H\right]}(1-\pi)^{1\left[x_{n}=T\right]}
$$

The log likelihood

- As a function of π, the probability of a set of observations is called the likelihood function.

$$
p\left(x_{1}, \ldots, x_{N} \mid \pi\right)=\prod_{n=1}^{N} \pi^{1\left[x_{n}=H\right]}(1-\pi)^{1\left[x_{n}=T\right]}
$$

- Taking logs, this is the log likelihood function.

$$
\mathcal{L}(\pi)=\sum_{n=1}^{N} 1\left[x_{n}=H\right] \log \pi+1\left[x_{n}=T\right] \log (1-\pi)
$$

Bernoulli log likelihood

- We observe HHTHTHHTHHTHHTH.
- The value of π that maximizes the log likelihood is $2 / 3$.

The maximum likelihood estimate

- The maximum likelihood estimate is the value of the parameter that maximizes the log likelihood (equivalently, the likelihood).
- In the Bernoulli example, it is the proportion of heads.

$$
\hat{\pi}=\frac{1}{N} \sum_{n=1}^{N} 1\left[x_{n}=H\right]
$$

- In a sense, this is the value that best explains our observations.

Why is the MLE good?

- The MLE is consistent.
- Flip a coin N times with true bias π^{*}.
- Estimate the parameter from $x_{1}, \ldots x_{N}$ with the MLE $\hat{\pi}$.
- Then,

$$
\lim _{N \rightarrow \infty} \hat{\pi}=\pi^{*}
$$

- This is a good thing. It lets us sleep at night.

5000 coin flips

11011110010011100000100100111010100001 01011110001101111110110101110001111101 11111011011110011100101000010011101110 11101100011111101110011111000010111111 10011100011101000110101110110011111101 00100100110010001110110001101110110010 10111110000110010100011011001101101110 11011011001101111111011111111000100111 00110000000010111001101110111101100001 11010101011010011100111010101101111100 01111110111000101001111101010011011110 00011110100100100101111110011011100100 10111100111110110010110111100001001111 00001001111101101111101101011100101111 $11110101100101110001110111000111 \ldots$

Consistency of the MLE example

Gaussian log likelihood

- Suppose we observe x_{1}, \ldots, x_{N} continuous.
- We choose to model them with a Gaussian

$$
p\left(x_{1}, \ldots, x_{N} \mid \mu, \sigma^{2}\right)=\prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{\frac{-\left(x_{n}-\mu\right)^{2}}{2 \sigma^{2}}\right\}
$$

- The log likelihood is

$$
\mathcal{L}(\mu, \sigma)=-\frac{1}{2} N \log \left(2 \pi \sigma^{2}\right)-\sum_{n=1}^{N} \frac{\left(x_{n}-\mu\right)^{2}}{2 \sigma^{2}}
$$

Gaussian MLE

- The MLE of the mean is the sample mean

$$
\hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- The MLE of the variance is the sample variance

$$
\hat{\sigma^{2}}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2}
$$

- E.g., approval ratings of the presidents from 1945 to 1975.

Gaussian analysis of approval ratings

Q: What's wrong with this analysis?

Model pitfalls

- What's wrong with this analysis?
- Assigns positive probability to numbers <0 and >100
- Ignores the sequential nature of the data
- Assumes that approval ratings are IID!
- "All models are wrong. Some models are useful." (Box)

Some of the models we'll learn about

- Naive Bayes classification
- Linear regression and logistic regression
- Generalized linear models
- Hidden variables, mixture models, and the EM algorithm
- Factor analysis / Principal component analysis
- Sequential models
- Bayesian models

