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1 Basics of the EM Algorithm

The EM algorithm is a general purpose algorithm for finding the maximum likelihood
estimate in latent variable models. In the E-Step, we ”‘fill in”’ the latent variables using
the posterior, and in the M-Step, we maximize the expected complete log likelihood with
respect to the complete posterior distribution.

Let D , (x1, · · · , xN ) be the observed data, and let Z , hidden random variables.
(Note: We are not committing to any particular model.)

Now, let θ , the model parameters. Then:

θ̂ = argmax
θ

log p(x, z|θ)

= argmax
θ

log p(z|θ) + log p(x|z, θ).

The expression being maximized on the last line is known as the complete log likelihood.
In the latent setting:

θ̂ = argmax
θ

∑
z

p(x|θ)p(x|z, θ)

.

2 Jensen’s Inequality

Jensen’s inequality is a general result in convexity. It states that for a convex function f , if
λ ∈ [0, 1], then:

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y

.
This is illustrated by Figure 1 in R2. The points between x and y can be represented as

λx+ (1− λ)y. Clearly, the red line representing λf(x) + (1− λ)f(y) will always be larger
than the function evaluated at any of the points between x and y.

Figure 1: A Convex Function

We can also generalize the result to expectation: E[f(X)] ≥ f(E[X]).



3 The EM Objective Function

Now, let’s re-write the complete log likelihood function by multiplying it by q(z)
q(z) , where q(z)

represents an arbitrary distribution for the random variable Z.

log p(x|θ) = log
∑
Z

p(z|θ)p(x|z, θ)q(z)
q(z)

= log Eq
[
p(z|θ)p(x|z, θ)

q(z)

]
≥ Eq

[
log

p(z|θ)p(x|z, θ)
q(z)

]
L(θ; q) = Eq[log p(z|θ)] + Eq[log p(x|z, θ)]− Eq[log q(z)].

We derived the third line by using Jensen’s Inequality. The final result is the EM
objective function. Note that the final quantity E[log q(z)] is known as entropy.

4 The EM Algorithm

The EM algorithm proceeds by coordinate ascent. At each iteration t, we have the following
two values: q(t) and θ(t).

At the E-Step, we update the posterior value q of the random variable given the obser-
vations while holding θ(t) fixed.

q(t+1) = argmax
q

L(q, θ(t))

= p(z|x, θ(t)).

At the M-Step, we update the model parameters to maximize the expected complete
log likelihood function.

θ(t+1) = argmax
θ

L(q(t+1), θ)

.
To see how it works:

L(p(z|x, θ), θ) =
∑
Z

p(z|x, θ) log
p(x, z|θ)
p(z|x, θ)

=
∑
Z

p(z|x, θ) log
p(x, z|θ)p(x|θ)

p(x, z|θ)

=
∑
Z

p(z|x, θ) log p(x|θ)

= log p(x|θ)
∑
Z

p(z|x, θ)

= log p(x|θ)

Therefore, as we maximize the objective function, we are also maximizing the log like-
lihood function.
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