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1 Mixture Models
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Figure 1: Mixture Model for Document Collections

• π is the parameter representing mixture proportions (a vector that sums to 1)

• D is the document plate

• Zd is the random variable representing document clusters

• N is the number of words inside each document

• wd,n is a vector of n observed words in document d.

• βk is the parameter representing mixture components (a mixture of multinomials)

• K is the distribution over words

Now that we have defined our model, we want to determine the maximum likelihood
estimate of π and β1:k from our observed data Wd,1:N

D
d=1

This is analogous to finding the
K different means that describe our data. An outline of the process is as follows:

For each document d:

• choose Zd ∼ π,Zd ∈ {1, . . . , k}

• choose each word wd,n ∼ βzd

The data is then given by

Data = {wd,1:N}D
d:1



2 Mixture Model Likelihood Function

We define the log likelihood function

L(β1:k, π;Data) = log

D∏

d=1

k∑

z=1

p(z|π)

N∏

n=1

p(wd,n|βz) =

D∑

d=1

log

k∑

z=1

p(z|π)

N∏

n=1

p(wd,n|βz)

To dissect this we note that the marginal probability of a document

p(Wd,1:N |π, β1:k) =

k∑

z=1

p(z|π)

N∏

n=1

p(wd,n|βz)

The key difference from Naive Bayes is that here we do not observe the category of each
document (p(z|π)), rather, we sum out (

∑k
z=1

p(z|π)) for each possible category according
to the π distribution.

3 Expectation Maximization (EM) Algorithm

Problem: The above likelihood function does not decompose.
Solution: The Expectation Maximization (EM) algorithm.
The EM algorithm is a general purpose MLE algorithm for dealing with any latent variable
model, like zd above (as against Naive Bayes where there are no latent variables but only
observed categories) as long as you can compute the posterior distribution. We continually
iterate the algorithm until we have a converged MLE of π and β1:k. HMMs, Kalman filters,
and Baum-Welch are all examples of EM algorithms.

• Expectation(E)-step:

p(Zd|Wd,1:n, π, β1:k) = p(Zd|π)ℓ(π) ∝ p(Zd|π)

N∏

n=1

p(Wd,n|βz)

Given wd,1:N and the current model π, β1:k we compute the posterior distribution of
Zd (in the above equation, ℓ(π) is the likelihood of π). We are computing posterior
distributions of latent variables given generated data and performing a soft assignment
of each data point to a data cluster. This is like naive Bayes classification except we
are doing a soft assignment that will be adjusted each iteration of the algorithm.

• Maximization(M)-step:

πnew ∝

D∑

d=1

p(Zd|π, β1:k,Wd,1:N )

In the M-step, we find a new model based on those posteriors. In this step, the
posteriors are fixed and the model is refit to obtain a new setting of our parameters.
This step is similar to the K-means step of recomputing the means. However, in EM
the clusters are based on soft assignments. With EM we do not have to make hard
choices! We could have data points that are 50% in one cluster and 50% in another
etc. Having a probabilistic distribution makes E-M more straightforward to generalize
this to new situations.
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Expected number of times we see each mixture component assignment:

πnew
k ∝

D∑

d=1

E[1[Zd = 1]|Wd,1:N ]

normalizing constant = d = number of documents
Probability that we see Bth word in document of component k:

βnew
k,v ∝

expected number of times that you see word v in a document of class k:

E[

D∑

d=1

N∑

n=1

1[Wd,n = v]1[d= k]] =

D∑

d=1

N∑

n=1

1[Wd,n = v]p(Zd = k|β1:k, π, wd,n)

Expected number of times we see document of component k, where expectation is taken
with respect to the posterior Zd is πk

4 Example

E-step: Go through each document, is it more about sports health or business? now have a
distribution over sports health and business. K-means assigns each document to a cluster.
M-step: For each word, how often was it softly classified? In K-means we re-estimated
cluster centers, in EM we re- estimate word probabilities.

d = document n = word in each doc

Cβk
=

V∑

v=1

D∑

d=1

N∑

n=1

1[wd,n = v]p(Zd = k| . . .) =
D∑

d=1

p(Zd = k| . . .)
∑

v

∑

n

1[wd,n = v] = N

D∑

d=1

p(Zd = k| . . .)

EM algorithm tries to find a fixed point of the expected complete log likelihood. It is
always increasing the original log likelihood. Each iteration of an E step and M step gives
us a new π and β, each time increasing the log likelihood function.

E[

D∑

d=1

{log p(Zd|π) +

N∑

n=1

log p(Wd,n|βzd
)}|w, π, β)]

function of π and β: posterior depends on them
First part means that if we have a complete log likelihood of all our random variables

though, it is as if we observed them all. This is the objective function that the EM algorithm
is optimizing, it keeps iterating until it converges.
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Figure 2: Mixture of 3 gaussians

5 Summary

Mixture models allow for any data generating distribution and mixture models are a dis-
tribution.

p(x|π, θ) =
Z∑

z=1

p(z|π)p(x|θz)

Statisticians have proved that any distribution – up to certain conditions – can be
represented as a mixture of Gaussians.

4


