
COS 424: Interacting with Data

Lecturer: Dave Blei Lecture #6
Scribe: Xu Da Tan February 21, 2008

1 Review of Support Vector Machines

We are given {(xn, yn)}Nn=1, where xn are data points ∈ RP and yn are class labels ∈ {−1, 1}

• We assume that the data is linearly separable

• Recall from the previous lecture that f (x) = β>x where β is orthorgonal to β>x = 0

• For any point x, β>x
‖β‖ is the signed distance to β>x = 0

• The margin is given by C = minn
ynx>n β
‖β‖

• We want to maximize the margin: maxβC s.t. ynx>n β
‖β‖ ≥ C

• This setup is equivalent to minβ 1
2‖β‖

2 s.t. ynx>n β ≥ 1, which is a convex optimization
problem with linear constraints and therefore has a unique optimal solution

• The solution satisfies the Karush-Kuhn-Tucker conditions:

1. β =
N∑
n=1

αnynxn

2. αn > 0

3. αn
(
ynx

>
n β − 1

)
= 0

• We note that α > 0 iff xn is on the margin. These xn are the support vectors -
they “hold up” the hyperplane in the Euclidian space. All other points have Lagrange
multipliers, αn = 0

• Given a new data point, we can classify it by: ynew = sign
(
β>xnew

)
2 The Kernel Trick

2.1 Definition

A kernel is a simple function that corresponds to a dot product in a higher dimension space

2.2 An example

What do we do if the data is not linearly separable?

• Consider the transformation: (x1, x2)→φ
(
x2

1, x
2
2,
√

2x1x2

)
• We can therefore map the data to a higher dimension, fit the SVM, and then project

the classified data back down



Figure 1: How do we place a line in the right way?

• However, this approach is expensive!

• From the previous lecture, we have LD =
N∑
n=1

αn − 1
n

N∑
i=1

N∑
j=1

yiyjx
>
i xj

• Replacing the x’s with φ (·), we get LD =
N∑
n=1

αn − 1
n

N∑
i=1

N∑
j=1

yiyjφ (xi)
> φ (xj)

• φ (xi)
> φ (xj) =

(
x>i xj

)2 = K (xi, xj), note that this does not work for all φ (·)

• Then, LD =
N∑
n=1

αn − 1
n

N∑
i=1

N∑
j=1

yiyjK (xi, xj)

2.3 Example of kernels

• Polynomial kernel:
(
1 + x>i xj

)d
• Radio basic kernel: exp

{
−‖xi−xj‖2

C

}
• Note that any algorithm that relies only on a dot product between vectors can be

kernelized

• To classify a new data point, observe that β =
N∑
i=1

αnynφ (xn)

• Then, sign
(
β>φ (xnew)

)
= sign

(
N∑
n=1

αnynφ (xn)> φ (xnew)
)

• Thus we can classify a new data point without going to a higher dimensional space!

2.4 Properties of the kernel method

The kernel method combines notions of:

1. Robustness - because of support vectors

2. Complexity - can look at complicated decision boundaries

3. Convex optimization

2



3 Boosting

3.1 Introduction

Consider the SPAM/HAM classification problem. We can come up with rough rules of
thumb (r.o.t) to classify the data, such as:

• If it is only an image ⇒ SPAM, otherwise ⇒ HAM

• If it is from someone who has never emailed you ⇒ SPAM, otherwise ⇒ HAM

• More than 80% misspelt words ⇒ SPAM, otherwise ⇒ HAM

• Main idea - Boosting converts many r.o.t into a highly accurate predictor. The only
requirement of dumb classifiers is that they do better than random

3.2 Sketch of algorithm

1. Devise a way to find a r.o.t

2. Run on a subset of your data

3. Obtain first r.o.t

4. Run the same procedure on a second subset of data

5. Repeat T times of this algorithm

6. Combine T r.o.t to obtain classifier

3.3 Terminology

• “Weak hypothesis” = r.o.t

• “Weak learner” = procedure for finding r.o.t

• “Weak learning assumption” = We can find a weak hypothesis with error 1
2 − γ, γ ∈

(0, 1)

3.4 Theorem

Boosting can drive the training error down to ε for any ε > 0

3.5 Intuition behind boosting

• Empirically, boosting does very well in test error too

• The algorithm imposes a distribution over the data after the first r.o.t such that the
data that is ‘correct’ is weighed less and the data that is ‘wrong’ is weighed more i.e.
focus on the errors

3.6 An illustration of boosting

3



Figure 2: First rule of thumb Figure 3: Reweighting the data points

Figure 4: Second rule of thumb Figure 5: Reweighting the data points again

4


