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I. Monty Hall Problem

1/3 chance - picked correctly intitially (don’t switch), 2/3 chance - picked incorrectly initially
(switch)

Ci = indicator that the car is behind door i Hij = indicator that the host chooses door
j when the player chooses door i

P (Hij |Ck = 1) = 0ifi = j, = 0ifj = k, = 1/2ifi = k, = 1ifi 6= k, j 6= k(technically,
alsoi 6= j)

Monty opens door 3
P(C1|H13)αp(C1) ∗ P (H13|C1 = 1) = 1/3 ∗ 1/2 = 1/6
P(C2|H13)αp(C2) ∗ P (H13|C2 = 1) = 1/3 ∗ 1 = 1/3

Alternate Method

X= indicator that the correct door is picked initially

P (X = 1|host opens a door) = P (X = 1,host opens a door)P (host opens a door)

P (X = 1,host opens a door) = P (host opens a door|X = 1) ∗ P (X = 1) = 1/3

P (host opens a door) = 1

Therefore, P (X = 1|host opens a door) = 1/3
1 = 1/3 So the contestant should switch

II. Probability

Continuous R.V.s

Density p(x)
∫∞
−∞ p(x)dx = 1

Probability is an integral over a smaller interval
P (Xε(−2.4, 6.5)) =

∫ 6.5
−2.4 p(x)dx

Gaussian Distribution
P (x|µ, σ2) = 1√

2π∗σ ∗ e−(x−µ)2/2σ2

Are µ ,σ2 parameters or random variables? This is a great debate between Bayesian and
Frequentists -In this class, we’ll be both!

µεR, σ2εR+

Expectaion

Consider a function of an r.v. f(X) Expectation is weighted average of f(X)

E[f(X)] =
∑

x p(x)f(x)

continuous case:
E[f(X)] =

∫
p(x)f(x)dx

µ = E[X]
σ2 = E[X2] − (E[X])2ConditionalExpectation
E[f(X) — Y = y ] =

∑
x p(x|y)f(x)

Units: E[f(X)|Y = y] - scaler, E[f(X)|Y ] - random variable



Iterated Expectation (Tower Property)

E[E[f(X) — Y = y ]] =
∑

y p(y)E[f(X)|Y = y]
(1)

=
∑
y

p(y)
∑
x

p(x|y)f(x) (2)

=
∑
y

∑
x

p(x, y)f(x) (3)

=
∑
y

∑
x

p(x)p(y|x)f(x) (4)

=
∑
x

p(x)f(x) (5)

= E[f(x)]
(6)

Probability Models
- Use probability as a model of observed data - Pretend that data is drawn from an

unknown distribution - INFER properties of that distribution - Use our inferences for some-
thing

IID Assumption - Independent and indetically distributed - Parameter index a distribution

e.g. coin flip has Bernouli
p(x|π) = π1(X=H)(1 − π)1(X=T )

Suppose we flip the coin N times and record the outcomes
X1, ..., Xn

Likelihood Function
p(X1, ..., Xngivenπ) =

∏
n=1)Nπ1(Xn=H)(1−π)1(Xn=T )

log-likelihood
L(π,Xi, ..., Xn) =

∑N
n=1 1(Xn = H)logπ + 1(Xn = T )log(1 − π)

L(π,Xi, ..., Xn) = nH logπ + nT log(1 − π)

(MLE) Maximum Likelihood Estimate (i.e. Why do we care about log-likelihood?)
The value of the parameter that maximizes the log likelihood (equivalently the likeli-

hood) of the observed data

MLE π̂ = 1
N

∑N
n=1 1[Xn = H] = nh

N

Why do we like MLE?
- Consistent - If we see more and more coin flips we will get closer and closer to the true

probabilities
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