COS 424: Interacting with Data

Lecturer: David Blei
Lecture \# 3
Scribe: Anthony Soroka, Ilya Tsinis
2/12/08

I. Monty Hall Problem

$1 / 3$ chance - picked correctly intitially (don't switch), $2 / 3$ chance - picked incorrectly initially (switch)
$C_{i}=$ indicator that the car is behind door i $H_{i j}=$ indicator that the host chooses door j when the player chooses door i
$P\left(H_{i j} \mid C_{k}=1\right)=0 i f i=j,=0 i f j=k,=1 / 2 i f i=k,=1 i f i \neq k, j \neq k$ (technically, also $i \neq j$)

Monty opens door 3
$\mathrm{P}\left(\mathrm{C}_{1} \mid H_{13}\right) \alpha p\left(C_{1}\right) * P\left(H_{13} \mid C_{1}=1\right)=1 / 3 * 1 / 2=1 / 6$
$\mathrm{P}\left(\mathrm{C}_{2} \mid H_{13}\right) \alpha p\left(C_{2}\right) * P\left(H_{13} \mid C_{2}=1\right)=1 / 3 * 1=1 / 3$
Alternate Method
$\mathrm{X}=$ indicator that the correct door is picked initially
$P(X=1 \mid$ host opens a door $)=P(X=1$, host opens a door $) \overline{P(}$ host opens a door $)$
$P(X=1$, host opens a door $)=P($ host opens a door $\mid X=1) * P(X=1)=1 / 3$
$P($ host opens a door $)=1$
Therefore, $P(X=1 \mid$ host opens a door $)=\frac{1 / 3}{1}=1 / 3$ So the contestant should switch

II. Probability

Continuous R.V.s
Density $p(x) \int_{-\infty}^{\infty} p(x) d x=1$
Probability is an integral over a smaller interval

$$
P(X \epsilon(-2.4,6.5))=\int_{-2.4}^{6.5} p(x) d x
$$

Gaussian Distribution

$$
P\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} * \sigma} * e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

Are μ, σ^{2} parameters or random variables? This is a great debate between Bayesian and Frequentists -In this class, we'll be both!
$\mu \epsilon R, \sigma^{2} \epsilon R^{+}$

Expectaion

Consider a function of an r.v. $f(X)$ Expectation is weighted average of $f(X)$

$$
\mathrm{E}[\mathrm{f}(\mathrm{X})]=\sum_{x} p(x) f(x)
$$

continuous case:
$\mathrm{E}[\mathrm{f}(\mathrm{X})]=\int p(x) f(x) d x$
$\mu=E[X]$
$\sigma^{2}=E\left[X^{2}\right]-(E[X])^{2}$ ConditionalExpectation
$\mathrm{E}[\mathrm{f}(\mathrm{X})-\mathrm{Y}=\mathrm{y}]=\sum_{x} p(x \mid y) f(x)$
Units: $E[f(X) \mid Y=y]$ - scaler, $E[f(X) \mid Y]$ - random variable

$$
\begin{array}{r}
\mathrm{E}[\mathrm{E}[\mathrm{f}(\mathrm{X})-\mathrm{Y}=\mathrm{y}]]= \\
\sum_{y} p(y) E[f(X) \mid Y=y] \\
=\sum_{y} p(y) \sum_{x} p(x \mid y) f(x) \\
=\sum_{y} \sum_{x} p(x, y) f(x) \\
=\sum_{y} \sum_{x} p(x) p(y \mid x) f(x) \\
=\sum_{x} p(x) f(x) \tag{6}\\
=E[f(x)]
\end{array}
$$

Probability Models

- Use probability as a model of observed data - Pretend that data is drawn from an unknown distribution - INFER properties of that distribution - Use our inferences for something

IID Assumption - Independent and indetically distributed - Parameter index a distribution
e.g. coin flip has Bernouli

$$
p(x \mid \pi)=\pi^{1(X=H)}(1-\pi)^{1(X=T)}
$$

Suppose we flip the coin N times and record the outcomes

$$
X_{1}, \ldots, X_{n}
$$

Likelihood Function

$$
p\left(X_{1}, \ldots, X_{n} \text { given } \pi\right)=\prod_{n=1)^{N} \pi^{1\left(X_{n}=H\right)}(1-\pi)^{1\left(X_{n}=T\right)}}
$$

log-likelihood

$$
\begin{aligned}
& L\left(\pi, X_{i}, \ldots, X_{n}\right)=\sum_{n=1}^{N} 1\left(X_{n}=H\right) \log \pi+1\left(X_{n}=T\right) \log (1-\pi) \\
& \mathrm{L}\left(\pi, X_{i}, \ldots, X_{n}\right)=n_{H} \log \pi+n_{T} \log (1-\pi)
\end{aligned}
$$

(MLE) Maximum Likelihood Estimate (i.e. Why do we care about log-likelihood?)
The value of the parameter that maximizes the log likelihood (equivalently the likelihood) of the observed data
MLE $\hat{\pi}=\frac{1}{N} \sum_{n=1}^{N} 1\left[X_{n}=H\right]=\frac{n_{h}}{N}$
Why do we like MLE?

- Consistent - If we see more and more coin flips we will get closer and closer to the true probabilities

