

The R Project

Environment for statistical computing
and graphics
• Free software

Associated with simple programming
language
• Similar to S and S-plus

www.r-project.org

The R Project
Versions of R exist of Windows, MacOS, Linux
and various other Unix flavors

R was originally written by Ross Ihaka and
Robert Gentleman, at the University of
Auckland

It is an implementation of the S language,
which was principally developed by John
Chambers

On the shoulders of giants…

In 1998, the Association for Computing
Machinery gave John Chambers its
Software Award. His citation reads:

“S has forever altered the way people analyze,
visualize, and manipulate data ... It is an
elegant, widely accepted, and enduring
software system, with conceptual integrity.”

Compiled C vs Interpreted R

C requires a complete program to run
• Program is translated into machine code
• Can then be executed repeatedly

R can run interactively
• Statements converted to machine instructions as

they are encountered
• This is much more flexible, but also slower

R Function Libraries

Implement many common statistical
procedures

Provide excellent graphics functionality

A convenient starting point for many data
analysis projects

R Programming Language

Interpreted language

To start, we will review
• Syntax and common constructs

• Function definitions

• Commonly used functions

Interactive R

R defaults to an interactive mode

A prompt “>” is presented to users

Each input expression is evaluated…
… and a result returned

R as a Calculator
> 1 + 1 # Simple Arithmetic
[1] 2
> 2 + 3 * 4 # Operator precedence
[1] 14
> 3 ^ 2 # Exponentiation
[1] 9
> exp(1) # Basic mathematical functions are available
[1] 2.718282
> sqrt(10)
[1] 3.162278
> pi # The constant pi is predefined
[1] 3.141593
> 2*pi*6378 # Circumference of earth at equator (in km)
[1] 40074.16

Variables in R

Numeric
• Store floating point values

Boolean (T or F)
• Values corresponding to True or False

Strings
• Sequences of characters

Type determined automatically when variable
is created with "<-" operator

R as a Smart Calculator

> x <- 1 # Can define variables
> y <- 3 # using "<-" operator to set values
> z <- 4
> x * y * z
[1] 12

> X * Y * Z # Variable names are case sensitive
Error: Object "X" not found

> This.Year <- 2004 # Variable names can include period
> This.Year
[1] 2004

R does a lot more!

Definitely not just a calculator

R thrives on vectors

R has many built-in statistical and
graphing functions

R Vectors

A series of numbers

Created with
•c() to concatenate elements or sub-vectors
•rep() to repeat elements or patterns
•seq() or m:n to generate sequences

Most mathematical functions and operators can
be applied to vectors
• Without loops!

Defining Vectors
> rep(1,10) # repeats the number 1, 10 times
[1] 1 1 1 1 1 1 1 1 1 1
> seq(2,6) # sequence of integers between 2 and 6
[1] 2 3 4 5 6 # equivalent to 2:6
> seq(4,20,by=4) # Every 4th integer between 4 and 20
[1] 4 8 12 16 20
> x <- c(2,0,0,4) # Creates vector with elements 2,0,0,4
> y <- c(1,9,9,9)
> x + y # Sums elements of two vectors
[1] 3 9 9 13
> x * 4 # Multiplies elements
[1] 8 0 0 16
> sqrt(x) # Function applies to each element
[1] 1.41 0.00 0.00 2.00 # Returns vector

Accessing Vector Elements
Use the [] operator to select elements

To select specific elements:
• Use index or vector of indexes to identify them

To exclude specific elements:
• Negate index or vector of indexes

Alternative:
• Use vector of T and F values to select subset of elements

Accessing Vector Elements
> x <- c(2,0,0,4)
> x[1] # Select the first element, equivalent to x[c(1)]
[1] 2
> x[-1] # Exclude the first element
[1] 0 0 4
> x[1] <- 3 ; x
[1] 3 0 0 4
> x[-1] = 5 ; x
[1] 3 5 5 5
> y < 9 # Compares each element, returns result as vector
[1] TRUE FALSE FALSE FALSE
> y[4] = 1
> y < 9
[1] TRUE FALSE FALSE TRUE
> y[y<9] = 2 # Edits elements marked as TRUE in index vector
> y
[1] 2 9 9 2

Data Frames

Group a collection of related vectors

Most of the time, when data is loaded, it
will be organized in a data frame

Let’s look at an example …

Setting Up Data Sets

Load from a text file using read.table()
• Parameters header, sep, and na.strings control

useful options
•read.csv() and read.delim() have useful defaults

for comma or tab delimited files

Create from scratch using data.frame()
• Example:
data.frame(height=c(150,160),

weight=(65,72))

Blood Pressure Data Set
HEIGHT WEIGHT WAIST HIP BPSYS BPDIA
172 72 87 94 127.5 80
166 91 109 107 172.5 100
174 80 95 101 123 64
176 79 93 100 117 76
166 55 70 94 100 60
163 76 96 99 160 87.5
...

Read into R using:
bp <-

read.table(“bp.txt”,header=T,na.strings=c(“x”))

Accessing Data Frames

Multiple ways to retrieve columns…

The following all retrieve weight data:
•bp[“WEIGHT”]
•bp[,2]
•bp$WEIGHT

The following excludes weight data:
•bp[,-2]

Lists

Collections of related variables

Similar to records in C

Created with list function
•point <- list(x = 1, y = 1)

Access to components follows similar rules as for
data frames, the following all retrieve x:
•point$x; point[“x”]; point[1]; point[-2]

So Far …
Common Forms of Data in R

Variables are created as needed

Numeric values
Vectors
Data Frames
Lists

Used some simple functions:
•c(), seq(), read.table(), …

Next …

More detail on the R language, with a
focus on managing code execution

• Grouping expressions

• Controlling loops

Programming Constructs

Grouped Expressions
Control statements
•if … else …

•for loops
•repeat loops
•while loops

•next, break statements

Grouped Expressions

{expr_1; expr_2; … }

Valid wherever single expression could be
used

Return the result of last expression evaluated

Relatively similar to compound statements in C

if … else …

if (expr_1) expr_2 else expr_3

The first expression should return a
single logical value

• Operators && or || may be used

Conditional execution of code

for

for (name in expr_1) expr_2

Name is the loop variable

expr_1 is often a sequence
• e.g. 1:20
• e.g. seq(1, 20, by = 2)

Example: for

Sample M random pairings in a set of N objects
for (i in 1:M)

{
As shown, the sample function returns a
single
element in the interval 1:N
p = sample(N, 1)
q = sample(N, 1)

Additional processing as needed…
ProcessPair(p, q);
}

while

while (expr_1) expr_2

While expr_1 is false, repeatedly
evaluate expr_2

break and next statements can be
used within the loop

Example: while
Sample with replacement from a set of N objects
until 615 and 815 are sampled consecutively
match <- false
while (match == false)

{
sample a new element
p = sample(N, 1)

if not 615, then goto next iteration
if (p != 615)

next;

Sample another element
q = sample(N, 1)

Check if we are done
if (q != 815)

match = true;
}

Functions in R

Easy to create your own functions in R

As tasks become complex, it is a good
idea to organize code into functions that
perform defined tasks

In R, it is good practice to give default
values to function arguments

Function definitions

name <- function(arg1, arg2, …)
expression

Arguments can be assigned default values:
arg_name = expression

Return value is the last evaluated expression
or can be set explicitly with return()

Defining Functions
> square <- function(x = 10) x * x
> square()
[1] 100
> square(2)
[1] 4

> intsum <- function(from=1, to=10)
{
sum <- 0
for (i in from:to)

sum <- sum + i
sum
}

> intsum(3) # Evaluates sum from 3 to 10 …
[1] 52
> intsum(to = 3) # Evaluates sum from 1 to 3 …
[1] 6

Some notes on functions …
You can print the arguments for a function using args()
command

> args(intsum)
function (from = 1, to = 10)

You can print the contents of a function by typing only its
name, without the ()

You can edit a function using
> my.func <- edit(my.old.func)

Debugging Functions
Toggle debugging for a function with
debug()/undebug() command

With debugging enabled, R steps through
function line by line
• Use print() to inspect variables along the way
• Press <enter> to proceed to next line

> debug(intsum)
> intsum(10)

So far …
Different types of variables
• Numbers, Vectors, Data Frames, Lists

Control program execution
• Grouping expressions with {}
• Controlling loop execution

Create functions and edit functions
• Set argument names
• Set default argument values

Useful R Functions

Online Help
Random Generation
Input / Output
Data Summaries
Exiting R

Random Generation in R

In contrast to many C implementations, R
generates pretty good random numbers

set.seed(seed)can be used to select a
specific sequence of random numbers

sample(x, size, replace = FALSE)
generates a sample of size elements from x.
• If x is a single number, sample is from 1:x

Random Generation
runif(n, min = 1, max = 1)
• Samples from Uniform distribution
rbinom(n, size, prob)
• Samples from Binomial distribution
rnorm(n, mean = 0, sd = 1)
• Samples from Normal distribution
rexp(n, rate = 1)
• Samples from Exponential distribution
rt(n, df)
• Samples from T-distribution

And others!

R Help System
R has a built-in help system with useful
information and examples

help() provides general help
help(plot) will explain the plot function
help.search(“histogram”) will search for
topics that include the word histogram

example(plot) will provide examples for the
plot function

Input / Output

Use sink(file) to redirect output to a file
Use sink() to restore screen output

Use print() or cat() to generate output
inside functions

Use source(file) to read input from a
file

Basic Utility Functions
length() returns the number of elements
mean() returns the sample mean
median() returns the sample mean
range() returns the largest and smallest values
unique() removes duplicate elements
summary() calculates descriptive statistics
diff() takes difference between consecutive
elements
rev() reverses elements

Managing Workspaces

As you generate functions and variables, these
are added to your current workspace

Use ls() to list workspace contents and rm()
to delete variables or functions

When you quit, with the q() function, you can
save the current workspace for later use

Today

Introduction to Graphics in R

Examples of commonly used graphics
functions

Common options for customizing graphs

Computer Graphics

Graphics are important for conveying important
features of the data

They can be used to examine
• Marginal distributions
• Relationships between variables
• Summary of very large data

Important complement to many statistical and
computational techniques

Example Data

The examples in this lecture will be
based on a dataset with six variables:
• Height (in cm)
• Weight (in kg)
• Waist Circumference (in cm)
• Hip Circumference (in cm)
• Systolic Blood Pressure
• Diastolic Blood Pressure

The Data File
Height Weight Waist Hip bp.sys bp.dia
172 72 87 94 127.5 80
166 91 109 107 172.5 100
174 80 95 101 123 64
176 79 93 100 117 76
166 55 70 94 100 60
163 76 96 99 160 87.5
154 84 98 118 130 80
165 90 108 101 139 80
155 66 80 96 120 70
146 59 77 96 112.5 75
164 62 76 93 130 47.5
159 59 76 96 109 69
163 69 96 99 155 100
143 73 97 117 137.5 85
. . .

Reading in the Data
> dataset <- read.table(“815data.txt", header = T)
> summary(dataset)

Height Weight Waist
Min. :131.0 Min. : 0.00 Min. : 0.0
1st Qu.:153.0 1st Qu.: 55.00 1st Qu.: 74.0
Median :159.0 Median : 63.00 Median : 84.0
Mean :159.6 Mean : 64.78 Mean : 84.6
3rd Qu.:166.0 3rd Qu.: 74.00 3rd Qu.: 94.0
Max. :196.0 Max. :135.00 Max. :134.0

. . .

Graphics in R

plot() is the main graphing function

Automatically produces simple plots for
vectors, functions or data frames

Many useful customization options…

Plotting a Vector

plot(v) will print the elements of the vector
v according to their index

Plot height for each observation
> plot(dataset$Height)
Plot values against their ranks
> plot(sort(dataset$Height))

Plotting a Vector

0 1000 2000 3000 4000

13
0

14
0

15
0

16
0

17
0

18
0

19
0

Index

da
ta

se
t$

H
ei

gh
t

plot(dataset$Height) plot(sort(dataset$Height))

0 1000 2000 3000 4000
13

0
14

0
15

0
16

0
17

0
18

0
19

0

Index

so
rt(

da
ta

se
t$

H
ei

gh
t)

Common Parameters for plot()

Specifying labels:
•main – provides a title
•xlab – label for the x axis
•ylab – label for the y axis

Specifying range limits
•ylim – 2-element vector gives range for x axis
•xlim – 2-element vector gives range for y axis

A Properly Labeled Plot

0 1000 2000 3000 4000

12
0

14
0

16
0

18
0

20
0

Distribution of Heights

Rank

H
ei

gh
t (

in
 c

m
)

plot(sort(dataset$Height), ylim = c(120,200),
ylab = "Height (in cm)", xlab = "Rank", main = "Distribution of Heights")

Plotting Two Vectors

plot() can pair elements from 2
vectors to produce x-y coordinates

plot() and pairs() can also produce
composite plots that pair all the variables
in a data frame.

Plotting Two Vectors

40 60 80 100 120 140

60
80

10
0

12
0

Circumference (in cm)

Hip

W
ai

st

plot(dataset$Hip, dataset$Waist,
xlab = "Hip", ylab = "Waist",

main = "Circumference (in cm)", pch = 2, col = "blue")

Plotting Two Vectors

40 60 80 100 120 140

60
80

10
0

12
0

Circumference (in cm)

Hip

W
ai

st

plot(dataset$Hip, dataset$Waist,
xlab = "Hip", ylab = "Waist",

main = "Circumference (in cm)", pch = 2, col = "blue")

Possible Outlier

Plotting Two Vectors

40 60 80 100 120 140

60
80

10
0

12
0

Circumference (in cm)

Hip

W
ai

st

plot(dataset$Hip, dataset$Waist,
xlab = "Hip", ylab = "Waist",

main = "Circumference (in cm)", pch = 2, col = "blue")

Possible Outlier

These options set
the plotting symbol
(pch) and line color
(col)

Plotting Contents of a Dataset

Height

40 60 80 100 120

13
0

15
0

17
0

19
0

40
60

80
10

0

Weight

130 150 170 190 60 80 100 120

60
80

10
0

12
0

Waist

plot(dataset[-c(4,5,6)])

Plotting Contents of a Dataset

Height

40 60 80 100 120

13
0

15
0

17
0

19
0

40
60

80
10

0

Weight

130 150 170 190 60 80 100 120

60
80

10
0

12
0

Waist

plot(dataset[-c(4,5,6)])

Weight and Waist
Circumference
Appear Strongly
Correlated

You could check
this with the cor()
function.

Histograms
Generated by the hist() function

The parameter breaks is key
• Specifies the number of categories to plot
or
• Specifies the breakpoints for each category

The xlab, ylab, xlim, ylim options
work as expected

Histogram

hist(dataset$bp.sys, col = "lightblue",
xlab = "Systolic Blood Pressure", main = "Blood Pressure")

Blood Pressure

Systolic Blood Pressure

Fr
eq

ue
nc

y

80 100 120 140 160 180 200 220

0
20

0
40

0
60

0
80

0
10

00

Histogram , Changed breaks

hist(dataset$bp.sys, col = "lightblue", breaks = seq(80,220,by=2),
xlab = "Systolic Blood Pressure", main = "Blood Pressure")

Blood Pressure

Systolic Blood Pressure

Fr
eq

ue
nc

y

80 100 120 140 160 180 200 220

0
10

0
20

0
30

0
40

0

Can you explain the peculiar
pattern? Graphical representations

of data are useful at identifying
these sorts of artifacts…

Boxplots

Generated by the boxplot() function

Draws plot summarizing
• Median
• Quartiles (Q1, Q3)
• Outliers – by default, observations more than

1.5 * (Q1 – Q3) distant from nearest quartile

A Simple Boxplot

boxplot(dataset, col = rainbow(6), ylab = "Appropriate Units")

Height Weight Waist Hip bp.sys bp.dia

50
10

0
15

0
20

0

A
pp

ro
pr

ia
te

 U
ni

ts

Adding Individual Observations

rug() can add a tick
for each observation
to the side of a
boxplot() and other
plots.

The side parameter
specifies where
tickmarks are drawn

40
60

80
10

0
12

0

Weight (in kg)

> boxplot(dataset$Weight,
main = "Weight (in kg)",
col = "red")

> rug(dataset$Weight, side = 2)

Customizing Plots

R provides a series of functions for
adding text, lines and points to a plot

We will illustrate some useful ones, but
look at demo(graphics) for more
examples

Drawing on a plot

To add additional data use
•points(x,y)
•lines(x,y)

For freehand drawing use
•polygon()
•rect()

Text Drawing

Two commonly used functions:
•text() – writes inside the plot region, could be used to

label datapoints

•mtext() – writes on the margins, can be used to add
multiline legends

These two functions can print mathematical
expressions created with expression()

Plotting Two Data Series
> x <- seq(0,2*pi, by = 0.1)
> y <- sin(x)
> y1 <- cos(x)
> plot(x,y, col = "green", type = "l", lwd = 3)
> lines(x,y1, col = "red", lwd = 3)
> mtext("Sine and Cosine Plot", side = 3, line = 1)

0 1 2 3 4 5 6

-1
.0

0.
0

1.
0

x

y

Sine and Cosine Plot

Printing on Margins,
Using Symbolic Expressions

> f <- function(x) x * (x + 1) / 2
> x <- 1:20
> y <- f(x)
> plot(x, y, xlab = "", ylab = "")
> mtext("Plotting the expression", side = 3, line = 2.5)
> mtext(expression(y == sum(i,1,x,i)), side = 3, line = 0)
> mtext("The first variable", side = 1, line = 3)
> mtext("The second variable", side = 2, line = 3)

5 10 15 20

0
10

0
20

0

Plotting the expression

y = ∑
1

x
i

The first variable

Th
e

se
co

nd
 v

ar
ia

bl
e

Adding a Label Inside a Plot
Who will develop obesity?

Weight

Fr
eq

ue
nc

y

20 40 60 80 100 120 140

0
20

0
40

0
60

0
80

0
10

00

At Risk

> hist(dataset$Weight, xlab = "Weight",
main = "Who will develop obesity?", col = "blue")

> rect(90, 0, 120, 1000, border = "red", lwd = 4)
> text(105, 1100, "At Risk", col = "red", cex = 1.25)

Symbolic Math
Example from demo(plotmath)

Big Operators

sum(x[i], i = 1, n) ∑
1

n
xi

prod(plain(P)(X == x), x) ∏
x

P(X = x)

integral(f(x) * dx, a, b) ⌠
⌡a

b
f(x)dx

union(A[i], i == 1, n) ∪
i=1

n
Ai

intersect(A[i], i == 1, n) ∩
i=1

n
Ai

lim(f(x), x %->% 0) lim
x→0

f(x)

min(g(x), x >= 0) min
x≥0

g(x)

inf(S) infS

sup(S) sup S

Further Customization

The par() function can change defaults for
graphics parameters, affecting subsequent
calls to plot() and friends.

Parameters include:
•cex, mex – text character and margin size
•pch – plotting character
•xlog, ylog – to select logarithmic axis scaling

Multiple Plots on A Page

Set the mfrow or mfcol options
• Take 2 dimensional vector as an argument
• The first value specifies the number of rows
• The second specifies the number of columns

The 2 options differ in the order
individual plots are printed

Multiple Plots
> par(mfcol = c(3,1))
> hist(dataset$Height,
breaks = 10,
main = "Height (in cm)",
xlab = "Height")

> hist(dataset$Height * 10,
breaks = 10,
main = "Height (in mm)",
xlab = "Height")

> hist(dataset$Height / 2.54,
breaks = 10,
main = "Height (in inches)",
xlab = "Height")

Height (in cm)

Height

Fr
eq

ue
nc

y

130 140 150 160 170 180 190 200

0
40

0
80

0

Height (in mm)

Height

Fr
eq

ue
nc

y

1300 1400 1500 1600 1700 1800 1900 2000

0
40

0
80

0

Height (in inches)

Height

Fr
eq

ue
nc

y

50 55 60 65 70 75

0
40

0
80

0

Outputting R Plots

R usually generates output to the screen

In Windows and the Mac, you can point and click
on a graph to copy it to the clipboard

However, R can also save its graphics output in
a file that you can distribute or include in a
document prepared with Word or LATEX

Selecting a Graphics Device

To redirect graphics output, first select a
device:
•pdf() – high quality, portable format
•postscript() – high quality format
•png() – low quality, but suitable for the web

After you generate your graphics, simply close
the device
•dev.off()

Example of Output Redirection
> x <- runif(100)
> y <- runif(100) * 0.5 + x * 0.5

This graph is plotted on the screen
> plot(x, y, ylab = “This is a simple graph”)

This graph is plotted to the PDF file
> pdf(“my_graph.pdf”)
> plot(x, y, ylab = “This is a simple graph”)
> dev.close()

Where does this one go?
> plot(x, y, ylab = “This is a simple graph”)

Summary of Today’s Lecture

Introduction to R

Variables in R
Basic Loop Syntax in R
Functions in R

Examples of useful built-in functions

Today

Introduction to Graphics in R

Examples of commonly used graphics
functions

Common options for customizing graphs

Learning More About R

Excellent documentation is available at
www.r-project.org

• “An Introduction to R”
by Venables and Smith
in the Documentation Section

Good book to browse is “Data Analysis and
Graphics in R” by Maindonald and Braun

