COS 423

 Problem Set 5
 Due: Friday, May 2

Spring 2008

 Except for 1(c)
No collaboration: You may use any material on the course website or in the text.

1. (Train Schedules) (a) Given is a collection of train stations and a collection of trains and their schedules. A schedule consists of a sequence of stations visited, along with arrival and departure times for each station. The initial station on the schedule has only a departure time; the final station has only an arrival time. All intermediate stations have both. Departure times are always after arrival times; the depart time at a station is always earlier than the arrival time at the next station. Devise an efficient algorithm to determine, given a starting station, a destination, and a start time, the earliest time one can arrive at the destination, and a sequence of trains that realizes the arrival time. Assume that for each station there is a fixed minimum amount of time needed to change trains at that station, also part of the problem input. (The time needed to change trains can depend on the station, but not on the trains.) Analyze the running time of your algorithm in terms of the number of stations and the total length of the schedules (the total number of stops made by the trains).

(b) Now suppose that for each train and each consecutive pair of stations a fare is given to take the given train between the given stations. Give an efficient algorithm to find a minimum-cost routing from a given station, starting at a given time, to another given station. Analyze the running time of your algorithm.

(c) (Extra credit: Due on May 9) A given customer may not be happy either with the fastest routing (too expensive) or the cheapest routing (too slow). Give an efficient algorithm for one or both of the following two problems: (i) find a cheapest routing subject to an arrival deadline; (ii) find a fastest routing subject to a budget. Analyze your algorithm(s). We say a routing dominates another routing if it is both faster and cheaper. Can you give a good bound on the number of non-dominated routings between a given pair of stations, given a starting time? Can you give an efficient algorithm to compute the set of non-dominated routings?

2. (A heuristic to speed up the preflow push maximum flow algorithm) Consider the following add-on to the preflow push algorithm. Every vertex is either live or dead. After all arcs out of the source are saturated, the source becomes dead and all other vertices are live. A live vertex v becomes dead when v is the only vertex with a given distance label and v is about to be relabeled. Pushes are only done from live vertices to other live vertices, and relabeling is redefined as follows: relabel(v) sets
[image: image1.wmf]()

dv

to
[image: image2.wmf]min{()1:

dww

+

 is live and (v, w) is a residual arc}; if there is no residual arc from v to a live vertex, v becomes dead. Relabeling is only done on live vertices; once a vertex becomes dead, it never becomes live. The algorithm stops when there are no live active vertices. The algorithm then does a post-processing step in which it makes dead any live vertex from which there is no path of residual arcs to the sink.
(over)
Describe how to do the post-processing step in linear time. Prove that, after the post-processing, the cut whose source side is the set of dead vertices and whose sink side is the set of live vertices is a minimum cut. To do this, give an efficient algorithm that modifies the final preflow by moving flow among the dead vertices to reduce the excess on all dead vertices (other than s) to zero. Analyze the running time of your algorithm. You will get full credit for an
[image: image3.wmf]O()

nm

time bound.

This version of the problem contains three corrections of the original. The first is to replace “max” by “min” is the relabel step. The second is to make a vertex dead if it is about to be relabeled but it has no outgoing residual arc to a live vertex. The third is the post-processing step. Even with the first two corrections, if the post-processing step is not done, it need not be true that the cut defined by the dead and live vertices is minimum (even though the net flow into the sink equals the value of a maximum flow). Construct an example to show this.
_1270275881.unknown

_1270878511.unknown

_1270275758.unknown

