COS 423 Problem Set 3 Due Wednesday April 2

Spring 2008 Collaboration allowed

1. Consider the following heuristic for the minimum cardinality vertex cover problem: Begin with the empty cover. Choose a vertex of maximum degree, add it to the cover, and delete it and all its incident edges from the graph. Continue until the graph is empty.

(a) Describe how to implement this heuristic so that it takes linear time.

(b) Prove that the size of the cover is within a logarithmic factor of minimum.

(c) Construct a family of examples on which the size of the cover exceeds the minimum by a logarithmic factor.

2. The goal of this problem is to compare the linked-list representation of disjoint sets (book section 21.2) with the disjoint-set forests representation (book section 21.3). We shall call the former representation B (for bad) and the latter representation G (for good). To make the comparison fair, we shall suppose that unions are done in the same way in both cases. That is, the unions are done so that the representatives of the sets formed by the unions are the same in each case. We shall charge each method one unit of time for each operation (make-set, find-set, or union) plus, in the case of representation B, one unit of time for each element whose representative changes; or, in the case of representation G, one unit of time each time a parent pointer changes as the result of a find. Prove that, no matter what the sequence of operations, representation G spends no more time than representation B.

3. The goal of this problem is to explore a possible application of disjoint set union to finding connected components of images. Consider an N by M two-dimensional array of pixels, each of which has the value either 1(on) or 0(off). The "1" pixels form connected regions bounded by the "0" pixels. We shall use the following loose definition of connected: two "1" pixels are adjacent if they are next to each other horizontally, vertically, or diagonally; two pixels are connected if there is a path of adjacent pixels from one to the other. The goal is to compute a second two-dimensional array of non-negative integer labels, with each "0" pixel getting the label zero, each "1" pixel getting a non-zero label, two "1" pixels getting the same label if and only if they are in the same connected component, and the number of different labels equal to one plus the number of different components.

(a) Give an algorithm to solve this problem that is as fast as possible, but subject to the following constraint: the algorithm does at most two passes over the set of array positions, scanning row-by-row in increasing order by row and from smaller-to-larger position within each row. Your algorithm is allowed to build and use auxiliary data structures, but your goal is to minimize the amount of extra space used as well as the running time. Analyze the running time and storage space of your algorithm.

(b) If your algorithm in (a) does not run in linear time, give a linear-time algorithm to solve the problem. In this case your algorithm does not have to scan the array in any particular order. (Linear time is O(NM) time.)
