COS 423 Problem Set No. 1 Correction Due: Wednesday 2/27

Spring 2008

 Collaboration Allowed
3. This problem needs to be more carefully defined. In order for the problem to work as I intended, all the leaves in the tree must be at the same level. The easiest way to do this is to use not B-trees, but B+-trees, which are what are generally used in data bases in fact. In a B+-tree, all the items are stored in the leaves; the item keys are stored redundantly in the internal nodes to allow searching. Each leaf can hold up to some number b of items, and each internal node can hold up to b keys and b + 1 pointers to children. The keys are used for searching: to find an item, follow the search path from the root, always following the child pointer that precedes the smallest key less than the item being sought (or the last child pointer, if all the keys in the node are no greater than the item being sought. To insert an item, find the leaf in which it belongs, and insert it. If the leaf contains more than b items, split it in half, add to its parent a key equal to that of the first item in the second of the new leaves, and add new child pointers from the parent to the two new children. If an internal node overflows because it has too many keys, split it in the same way. Note that it makes sense in this scheme to choose b odd, so that b + 1 is even, and both new nodes have the same number of items (or keys). To delete an item, find the leaf containing it, and delete the item. If this makes the leaf empty, delete the leaf; delete the pointer from its parent to it, and delete a neighboring key in the parent. Internal nodes can eventually lose all their keys, but such a node must have a single non-null child pointer. When the last child of an internal node becomes null, delete it, back up to its parent, and delete the pointer to it and a neighboring key. Deletions can thus propagate upward, deleting chains of nodes with single children. If the root loses its last key, its only child becomes the new root. If the root splits, a new root, the parent of the two new nodes, is created. Do parts (a), (b), and (c) for B+-trees with deletion as described here.

(a) Suppose that each node can hold at most 3 keys
[image: image1.wmf](2

t

=

 in the terminology of Chapter 18.) Suppose we start with an empty initial tree and do a sequence of m insertions and any number (up to
[image: image2.wmf])

m

of intermixed deletions, where the insertions are done by the algorithm of Section 18.2 (splitting overfull nodes) and the deletions are done by the algorithm above. Prove that the depth of the tree is always
[image: image3.wmf]O(log),

m

 so that the search time remains
[image: image4.wmf]O(log),

m

 even though there is no explicit rebalancing on deletion.

The result of (a) is nice, but note that the search time is logarithmic in the total number of insertions, not in the current tree size. We can remedy this by periodically rebuilding the tree from scratch.

(b) Describe how to build a B-tree of k items and no underfilled nodes in
[image: image5.wmf]O()

k

time.

(c) Assume that deletions are done without rebalancing as described above. Give a rule for deciding when to rebuild the B-tree so that the amortized rebuilding time is O(1) per insertion, and the tree depth is always
[image: image6.wmf]O(log),

n

where n is the current number of items in the tree, so the search time is
[image: image7.wmf]O(log).

n

_1264312369.unknown

_1264312416.unknown

_1264312490.unknown

_1264312513.unknown

_1264312452.unknown

_1264312385.unknown

_1264312261.unknown

