COS 423                           Problem Set No. 1                                    Due: Wednesday 2/27
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         Collaboration Allowed
1. (text, problem 17-3, page 427) Consider an ordinary binary search tree augmented by adding to each node x the field 
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 giving the number of keys stored in the subtree rooted at x.  Let 
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 be a constant in the range 
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 We say that a given node x is 
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The tree as a whole is 
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 if every node in the tree is 
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 The following amortized approach to maintaining weight-balanced trees was suggested by G. Varghese.
a. A 1/2-balanced tree is, in a sense, as balanced as it can be. Given a node x in an arbitrary binary search tree, show how to rebuild the subtree rooted at x so that it becomes1/2-balanced. Your algorithm should run in time 
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 and it can use 
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 auxiliary storage.
b. Show that performing a search in an n-node 
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binary search tree takes 
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For the remainder of this problem, assume that the constant
[image: image13.wmf]a

is strictly greater than 1/2. Suppose that INSERT and DELETE are implemented as usual for an n-node binary search tree, except that after every such operation, if any node in the tree is no longer 
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then the subtree rooted at the highest such node in the tree is “rebuilt” so that it becomes  1/2-blanced.

We shall analyze this rebuilding scheme using the potential method. For a node x in a binary search tree T, we define. 
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 and we define the potential of T as 
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 where c is a sufficiently large constant that depends on 
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c.   Argue that any binary search tree has nonnegative potential and that a 1/2-balanced tree has potential 0.

d.  Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must  c  be in terms of 
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 in order for it to take 
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amortized time to rebuild a subtree that is not 
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e.  Show that inserting a node into or deleting a node from an n-node 
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tree costs 
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amortized time.
2.(Root insertion) C. J. Stephenson has proposed a method of inserting an item into a binary search tree so that it is at the root, rather than at a leaf.  (No balance property is maintained.)  Here is his description:

The item to be inserted in the tree becomes the new root, and a descent is made through the tree, starting at the old root, comparing each node that is visited with the new root.  If a node has a value that exceeds that of the new root, then the node (with its descendants on the right) is attached on the right-hand side of the tree, and its left [child] becomes the next node to be visited; otherwise the node (with its descendants on the left) is attached to the left-hand side of the tree, and its right [child] becomes the next node to be visited. The points of attachment (on the left and right of the tree) are maintained so that the resulting tree is sorted. The descent stops when the next node to be visited does not exist.

(a) Prove that the tree resulting from an insertion by this method is exactly the same as the tree obtained by doing a standard insertion of the item at a new leaf and then rotating the item to the root by doing bottom-up single rotations.

(b) Do you see any advantage in implementing root insertion as Stephenson describes it, rather than as a standard insertion followed by a sequence of rotations?

3.(Deletions without rebalancing in B-trees). The point of this and the next problem is that a little knowledge is a dangerous thing.  It is folklore that deletion is a complicated operation in balanced search trees.  As a result, and for other reasons, many database implementations that make use of B-trees as the underlying data structure avoid rebalancing on deletion. Here is a deletion method for B-trees that does not do rebalancing.  For background on B-trees, see Chapter 18; compare the method to follow with that in Section 18.3.  To delete an item, if it is in a leaf, just delete it.  If it is in a node that is not a leaf, search down the tree to find its predecessor (or, symmetrically, its successor). Swap the item with its predecessor (or successor).  It is now in a leaf; delete it from the leaf.  This method avoids the merging of underfilled nodes (Step 2c on page 451), but it can result in many underfilled nodes, and, indeed, in empty nodes.  We need to modify the method to deal with empty nodes, as follows: when a node becomes empty, it is deleted, as is the pointer to it from its parent.  If an item in a non-leaf node is to be deleted but one of its neighboring child pointers is null, just delete the item from the non-leaf node, instead of searching for its predecessor or successor. With this method, it may also be the case that the predecessor or successor is in a non-leaf node, but then it must have a neighboring child pointer that is null, and the item to be deleted can safely be swapped with its predecessor or successor and deleted from its new node.

(a) Suppose that each node can hold at most 3 keys 
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 in the terminology of Chapter 18.)  Suppose we start with an empty initial tree and do a sequence of m insertions and any number (up to 
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of intermixed deletions, where the insertions are done by the algorithm of Section 18.2 (splitting overfull nodes) and the deletions are done by the algorithm above. Prove that the depth of the tree is always 
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 so that the search time remains 
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 even though there is no explicit rebalancing on deletion.

The result of (a) is nice, but note that the search time is logarithmic in the total number of insertions, not in the current tree size. We can remedy this by periodically rebuilding the tree from scratch.

(b) Describe how to build a B-tree of k items and no underfilled nodes in 
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time.

(c) Assume that deletions are done without rebalancing as described above. Give a rule for deciding when to rebuild the B-tree so that the amortized rebuilding time is O(1) per insertion, and the tree depth is always 
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where n is the current number of items in the tree, so the search time is 
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4.(Deletions without rebalancing in red-black trees). Suppose that we begin with an empty red-black tree and do insertions by the standard insertion algorithm for red-black trees, but we use the following algorithm for deletion: if the item to be deleted has two children, find its predecessor (or its successor) by searching down the tree; swap it with its predecessor or successor.  Now the item to be deleted has at most one child.  Delete it from the tree; make its old parent point to its old child (if any). This method of deletion is simple, and it maintains the red invariant, but it does not maintain the black invariant (if the node deleted is black).

(a) Give a sequence of m intermixed insertions and deletions that results in a tree whose depth is at least 
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 for some constant 
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 (In such a tree, searching takes linear, not logarithmic, time!)

(b) How do you explain the difference between what happens in problem 3 and what happens here, given that red-black trees are just a binarized version of 2-4 trees, which are in turn a slightly generalized kind of B-tree?
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